• Title/Summary/Keyword: 물질 재활용

Search Result 395, Processing Time 0.026 seconds

Synthesis of Zeolite P1 and Analcime from Sewage Sludge Incinerator Fly Ash (하수슬러지 소각 비산재를 이용한 제올라이트 P1 및 Analcime의 합성)

  • Lee, Je-Seung;Chung, Sook-Nye;Park, Chul-Hwi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.6
    • /
    • pp.659-665
    • /
    • 2008
  • This study is about zeolite synthesis from the sewage sludge incinerator fly ash of "S" sewage treatment center located in Seoul. For this purpose, the properties of raw fly ash as starting material, the hydrothermal conditions for zeolite synthesis and the environmental applicabilities of synthesized zeolites were examined. Fly ash from sewage sludge incinerator has large quantities of SiO$_2$ and Al$_2$O$_3$ and their contents are 42.8 wt.% and 21.2 wt.% respectively. So fly ash is considered to be possible starting material for zeolite synthesis. The results from leaching test of fly ash showed that the concentration of hazardous metals were very low as compared with the Korea leaching standard of the Waste Management Law. But the concentration from total recoverable test of fly ash were higher than the fertilizer standard of Fertilizer Management Law. Major zeolite products synthesized by hydrothermal reaction are analcime in teflon vessel and zeolite P1 in borosilicate flask. Optimum conditions for the synthesis of analcime were 1 N of NaOH concentration, 16 hour of reaction time and 135$^{\circ}C$ of reaction temperature. For the zeolite P1 formation, the proper conditions were demonstrated to be 5 N of NaOH concentration, 16 hour reaction time and 130$^{\circ}C$ of reaction temperature in this study. Hazardous metal contents in the analcime product are similar with those in raw fly ash. In case of the zeolite P1, the contents are reduced to nearly a half. Raw fly ash and the analcime product showed NH$_4{^+}$ ion exchange capacity of 0$\sim$1.0 mg of NH$_4{^+}$g$^{-1}$ and 3.0$\sim$7.4 mg of NH$_4{^+}$g$^{-1}$, respectively. However, the zeolite P1 product reached exchange capacity to 14.6$\sim$17.8 mg of NH$_4{^+}$g$^{-1}$. This values are in the range of those of natural clinoptilolite and phillipsite. From this point of view, zeolite synthesis from sewage treatment sludge incinerator fly ash is a good alternative for solid waste recycling.

Heavy Metals of Landfilled Biomass and Their Environmental Standard, Including CCA-treated Wood for Eco-housing Materials (방부처리 목재를 포함한 토양매립 바이오메스의 중금속 함량과 안전성 문제)

  • Lim, Kie-Pyo;Lee, Jong-Tak;Bum, Jung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.37-45
    • /
    • 2006
  • Recently, wood-framed houses has been built in the Korea for pension. Wood is good material for human healthy, while the construction lumbers are treated with preservative such as CCA (chromated copper arsenate), which contain some toxic elements for human body. However, if the waste woody biomass treated with various heavy metals, which has been collected from house construction or demolition, was fired in the field, and incinerated or landfilled after mass collection, such components will result in the toxic air pollutants in the burning or land fills, and spreaded into other areas. So the careful selection of wood and chemicals are required in advance for house construction, in particular, for environment-friendly housings. Therefore, this study was carried out to determine the content of toxic heavy metals in woody materials such as domestic hinoki and imported hemlock treated with CCA for housing materials, and the post-treated wood components such as organic fertilizer, sludge, dry-distilled charcoal and carbonized charcoal, to be returned finally into soil. The results are as follows. 1) The chemical analysis of toxic trace elements in various solid biomass required accurate control and management of laboratory environment, and reagents and water used, because of the error of data due to various foreign substances added in various processing and transporting steps. So a systematic analyzers was necessary to monitor the toxic pollutants of construction materials. 2) In particular, the biomass treated with industrial biological or thermal conditions such as sludge or charcoals was not fully dissolvable after third addition of $HNO_3$ and HF. 3) The natural woody materials such as organic fertilizer, sludge. and charcoals without any treatment of preservatives or heavy metal components were nontoxic in landfill because of the standard of organic fertilizers, even after thermal or biological treatments. 4) The CC A-treated wood for making the construction wood durable should not be landfilled, because of its higher contents of toxic metals than the criterion of organic fertilizer for agriculture or of natural environment. So the demolished waste should be treated separately from municipal wastes.

A Study on the Improvement of Treatment Efficiency for Nitrogen and Phosphorus by Improved Sewage Treatment Process in Constructed Wetland by Natural Purification Method (자연정화공법에 의한 인공습지 하수처리장에서 하수처리 공정개선에 따른 질소 및 인의 처리효율 향상 방안)

  • Seo, Dong-Cheol;Park, Woo-Young;Lim, Jong-Sir;Park, Chan-Hoon;Lee, Hong-Jae;Kim, Hong-Chul;Lee, Sang-Won;Lee, Do-Jin;Cho, Ju-Sik;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.1
    • /
    • pp.27-34
    • /
    • 2008
  • To effectively treat the domestic sewage that was produced on a small-scale in farming and fishing village in order to encourage an ecologically friendly environment, a small-scale sewage treatment apparatus using natural purification methods that consisted of an aerobic and an anaerobic plots were constructed. The efficiency of sewage treatment according to the sewage loading was investigated to obtain the optimum sewage loading in small-scale sewage treatment apparatus. Removal rate of pollutants according to the sewage loading were in the order of $150\;Lm^{-2}day^{-1}{\fallingdotseq}300\;Lm^{-2}day^{-1}>600\;Lm^{-2}day^{-1}$. Therefore, the optimum sewage loading was 300 L m-2 day-1. Under the optimum sewage loading, removal rate of BOD, $COD_{Mn}$, turbidity, T-N and T-P were 99, 94, 99, 49 and 89%, respectively. However, to satisfy the water quality standard in effluent in small-sclae sewage treatment apparatus for domestic sewage treatment, the low removal efficiency of T-N and T-P must be improved. So to improve the removal rate of T-N and T-P, the efficiency of sewage treatment according to the improved sewage treatment process such as, re-treatment at aerobic plot, anaerobic condition of aerobic plot, changing the filter media sizes and the depths in anaerobic plot, and also addition of oyster shells to filter media at anaerobic plot were investigated. In case of 150 cm depth in anaerobic plot with filter medium A (effectivity particle size 1.50 mm) and addition of oyster shells to filter media at anaerobic plot, removal rate of T-N and T-P in both plots were increased by 10 and 3%, and 14 and 7% in comparison with 100 cm depth in anaerobic plot with filter medium B(effectivity particle size 0.95 mm), respectively. The optimum improved sewage treatment process in small-scale sewage treatment apparatus were 150 cm depth in anaerobic plot with filter medium A and addition of oyster shells to filter media at anaerobic plot.

Characteristics Evaluation of Combustion by Analysis of Fuel Gas Using Refuse-derived Fuel by Mixing Different Ratios with Organic and Combustible Wastes (배연가스 분석에 의한 가연성과 유기성폐기물을 혼합한 고형화연료 연소 특성평가)

  • Ha, Sang-An
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.3
    • /
    • pp.27-39
    • /
    • 2009
  • The main objective of this study is to investigate the characteristics of combustion by analyzing fuel gases from a combustion equipment with various combustion conditions for refuse-derived fuels (RDFs). CO gas is a parameter for indicating of incomplete combustion during a combustion process. The lowest CO gas was produced when the experiment conditions were m=2 under air-fuel condition and $800^{\circ}C$. $CO_2$ gas is a final product after complete combustions. The highest amount of $CO_2$ gas was produced when the experiment conditions were m=2 under air-fuel condition and $800^{\circ}C$. The highest level of $SO_2$ gas was produced in S.1 sample containing the highest sulfur. The highest level of NOx gas was produced in S.1 sample with the highest nitrogen content and air-fuel condition of m=2 under temperature of $800^{\circ}C$. HCl gas that is generated by reacting with metals catalyst through oxygen catalyst reaction during combustion process is a precursor of dioxin formation. The higher level of HCl gas was produced in the sample with higher chlorine content. The lowest level of HCl gas was produced when the experiment conditions were air-fuel condition of m=2 and $800^{\circ}C$. The lowest level of $NH_3$ gas was generated when the experiment condition was m=2 under air-fuel condition and after 3 minutes. Air-fuel condition is more important to create $NH_3$ gas than operating temperatures. Higher level of $H_2S$ gas was generated in S.1 sample with the higher sulfur content and was created in RDFs that contain higher mixture ratios of sewage sludge and food wastes. A result of combustion, gases and gases levels from the combustion of S.1 and S.2 were very similar to the combustion of a stone coal. As results of this research, when evaluating the feasibility of the RDFs, the RDFs could be used as auxiliary and main fuels.

Synthesis of Artificial Zeolite from Fly Ash for Preparing Nursery Bed Soils and the Effects on the Growth of Chinese Cabbage (석탄회(石炭灰)를 이용한 육묘(育苗) 상토용(床土用) 인공(人工) 제올라이트의 제조와 배추 생육에 미치는 효과(效果))

  • Kim, Yong-Woong;Lee, Hyun-Hee;Yoon, Chung-Han;Shin, Bang-Sup;Kim, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.2
    • /
    • pp.95-106
    • /
    • 1998
  • To reduce the environmental contamination and to utilize fly ash massively produced from the coal power plant every year, we synthesized the artificial zeolite using fly ash treated with alkaline, and then analyzed the mineralogical and morphological properties by X-ray, IR, and SEM. The amount of $NH_4{^+}$, $K^+$, and $H_2PO_4{^-}$ adsorbed by the fly ash and the artificial zeolite were determined with reaction time, amount of adsorbate used, ion concentrations. The results obtained from the pot experiments packed with the top soil, amended with granulated artificial zeolite which was made by treatment of 4% polyvinylalcohol, showed that CEC of the artificial zeolite was $257.7cmol^+kg^{-1}$, that was almost 36 times greater than that of fly ash. The ratio of $SiO_2/Al_2O_3$ decreased but the amount of Na increased. The physico-chemical properties analyzed by X-ray, IT, and SEM represented that the artificial zeolite synthesized had a similar morphological structure to that of the natural zeolite. The structures of the artificial zeolite had a significantly enlarged surface having a lot of pores, while the fly ash looked like spherical smooth shape with having not pores on the surface. Thus, the artificial zeolite was successfully synthesized. The results of adsorption isotherms of fly ash and artificial zeolite showed that the amount of $NH_4{^+}$, $K^+$, and $H_2PO_4{^-}$ adsorbed increased as the equilibrium concentration increased, while $NH_4{^+}$ was strongly adsorbed on the surface of fly ash and artificial zeolite than that of $K^+$. The most distinctive growth of Chinese cabbage was found from the top soil(NPK + soils + 20% of granulated artificial zeolite + 5% of compost). Therefore, we concluded that one of the most effective methods to effectively recycle a fly ash was to make the artificial zeolite as we did in this experiment.

  • PDF

Optimization for the Process of Osmotic Dehydration for the Manufacturing of Dried Kiwifruit (건조키위 제조를 위한 삼투건조공정의 최적화)

  • Hong, Joo-Hun;Youn, Kwang-Seob;Choi, Yong-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.348-355
    • /
    • 1998
  • The developments of various processed foods and the high quality dried fruits, in particular, are urgently needed for the enhancement of fruit consumption and their competitive values. Therefore, in this study, three variables by three level factorial design and response surface methodology were used to determine optimum conditions for osmotic dehydration of kiwifruit. The relationships of moisture losses, solid gains, weight reductions, sugar contents, titratable acidities and vitamin C contents depending on changes with temperature, sugar concentration and immersion time were investigated. The moisture loss, solid gain, weight reduction and reduction of moisture content after osmotic dehydration were increased as temperature, sugar concentration and immersion time increased. The effect of concentration was more significant than those of temperature and time on mass transfer. Sugar content was increased by increasing sugar concentration, temperature, immersion time during osmotic dehydration. Titratable acidity and vitamin C content were increased by decreasing temperature, immersion time and increasing concentration during osmotic dehydration. The regression models showed a significant lack of fit (P>0.05) and were highly significant with satisfying values of $R^2$. At the given conditions such as $66{\sim}69%$ moisture content, above $24^{\circ}Brix$ sugar content and more than 23 mg% vitamin C, the optimum condition for osmotic dehydration was $37^{\circ}C,\;55^{\circ}Brix$ and 1.5 hour.

  • PDF

A study on the Development of a Drying and Fermentation Process of Domestic Animal Manure;II. Demonstration of a Pig Manure Treatment System on a Farm (가축분(家畜糞) 건조(乾燥) , 발효(醱酵) 복합시설(複合施設) 개발(開發) 연구(硏究);II. 돈분(豚糞) 건조(乾燥), 발효(醱酵), 복합시설(複合施設) 실증시험(實證試驗))

  • Yun, Sun-Gang;Jung, Kwang-Yong;Park, Woo-Kun;Kwon, Sun-Ik;Park, Hong-Jae;Yoo, Sun-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.13 no.2
    • /
    • pp.223-230
    • /
    • 1994
  • A practical study on a drying and fermentation system equipped with a stirring machine operated mechanically, of pig manure was conducted to prove the efficiency of and practicability to an ordinary pig farm. The type of the drying bed was a round-shaped (r=3m) concrete structure and the stirring machine was adopted to stir and transfer dried pig manure to the fermentation tank. The dried pig manure was put into a fermentation tank ($V=18m^3$), which was aerated from pipe lines installed at the bottom. While water content of pig manure passing through a drying bed was remarkably reduced than before drying, the drying efficiency of this system decreased in winter. However, the temperature of pig manure piled up in the fermentation room in winter reached over $60^{\circ}C$ and excess water of pig manure was removed during the fermentation process. The reduction rate of water content of pig manure, to which dried pig manure was added as bulking material on the drying bed, was 52.1%, but when dried without bulking material it was only 19.7%. Although the content of $P_2O_5$ of dried pig manure was slightly higher than that of fresh pig manure, progressive changes in chemical composition between fresh and dried pig manure made no great difference. Among the contents of minerals of fresh and dried pig manure, CaO was the highest and the rest were in the decreasing order of $K_2O$, MgO, and $Na_2O$. Population density of E. coli and Streptococci of dried pig manure was reduced by 142 and 236 times that of fresh pig manure, respectively. The installation cost of this drying and fermentation system was 4,185,630 won (approximately 5,232 US $) and operating cost per year was 190,000 won (237.5US $) on the basis of self-labor condition.

  • PDF

Preparation of Birnessite (δ-MnO2) from Acid Leaching Solution of Spent Alkaline Manganese Batteries and Removals of 1-naphthol (폐 알칼리망간전지의 산 침출액으로부터 버네사이트(δ-MnO2)의 제조 및 1-naphthol 제거)

  • Eom, Won-Suk;Lee, Han-Saem;Rhee, Dong-Seok;Shin, Hyun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.11
    • /
    • pp.603-610
    • /
    • 2016
  • This work studies the synthesis of birnessite (${\delta}-MnO_2$), a catalyst of oxidative-coupling reactions, from the powder of spent alkaline manganese batteries (SABP, <8 mesh) and evaluate its reactivity for 1-naphthol (1-NP) removals. Manganese oxides using commercial reagents ($MnSO_4$, $MnCl_2$) and the acid birnessite (A-Bir) by McKenzie method were also synthesized, and their crystallinity and reactivity for 1-NP were compared with one another. 96% Mn and 98% Zn were extracted from SABP by acid leaching at the condition of solid/liquid (S/L) ratio 1:10 in $1.0M\;H_2SO_4+10.5%\;H_2O_2$ at $60^{\circ}C$. From the acid leaching solution, 69% (at pH 8) and 94.3% (pH>13) of Mn were separated by hydroxide precipitation. Optimal OH/Mn mixing ratio (mol/mol) for the manganese oxide (MO) synthesis by alkaline (NaOH) hydrothermal techniques was 6.0. Under this condition, the best 1-NP removal efficiency was observed and XRD analysis confirmed that the MOs are corresponding to birnessite. Kinetic constants (k, at pH 6) for the 1-NP removals of the birnessites obtained from Mn recovered at pH 8 (${Mn^{2+}}_{(aq)}$) and pH>13 ($Mn(OH)_{2(s)}$) are 0.112 and $0.106min^{-1}$, respectively, which are similar to that from $MnSO_4$ reagent ($0.117min^{-1}$). The results indicated that the birnessite prepared from the SABP as a raw material could be used as an oxidative-coupling catalyst for removals of trace phenolic compounds in soil and water, and propose the recycle scheme of SAB for the birnessite synthesis.

Thermal Conductivity and Pore Characteristics of Low-Temperature Sintered Lightweight Aggregates Mode from Waste Glass and Bottom Ash (바텀애쉬와 폐유리를 사용하여 제조한 저온소성 경량골재의 열전도율과 기공특성)

  • Lee, Han-Baek;Ji, Suk-Won;Seo, Chee-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.851-858
    • /
    • 2010
  • In this study, waste glass and bottom ash were used as basic materials in order to secure a recycling technology of by-products which was mostly discarded and reclaimed. In addition, because softening point of waste glass is less than $700^{\circ}C$ and bottom ash includes combustible material, it was possible to manufacture low-temperature sintering lightweight aggregates for energy saving at $800{\sim}900^{\circ}C$ that it is as much as 20~30% lower than sintering temperature of existing lightweight aggregates. Thermal conductivity of newly-developed lightweight aggregates was 0.056~0.105W/m. K and its porosity was 40.36~84.89%. A coefficient of correlation between thermal conductivity and porosity was -0.97, it showed very high negative correlationship. With this, we were able to verify that porosity is key factor to affect thermal conductivity. Microstructure of lightweight aggregates by $CaCO_3$ content and replacement ratio of bottom ash in the variation of temperature were that $CaCO_3$ content increased along with pore size while replacement ratio of bottom ash increased as pore size decreased. Specially, most pores were open pore instead of closed pore of globular shape when replacement ratio of bottom ash was 30%, and pore size was small about 1/10~1/5 as compared with case in bottom ash 0~20%. In addition, open pore shapes were remarkably more irregular form of open pore in $900^{\circ}C$ than $700^{\circ}C$ or $800^{\circ}C$ when replacement ratio of bottom ash was 30%. We reasoned hereby that these results will influence on absorption increase, strength and thermal conductivity decrease of lightweight aggregates.

Synthesis of Na-A Type Zeolite and Its Ability to Adsorb Heavy Metals (Na-A형 제올라이트의 합성 및 중금속에 대한 흡착능)

  • Chae, Soo-Chun;Jang, Young-Nam;Bae, In-Kook;Lee, Sung-Ki;Ryou, Kyung-Won
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.37-44
    • /
    • 2008
  • This study was performed to synthesize Na-A type zeolite with melting slag from the Mapo incineration site and recycle the zeolite as an environmental remediation agent. The melting slag used had a favorable composition containing 26.6% $SiO_2$, 10.9% $Al_2O_3$ and 2.7% $Na_2O$ for zeolite synthesis although there were high contents of iron oxides, including 19.6% $Fe_2O_3$ and 18.9% FeO, which had been used as a flux for the melting. It was confirmed that the Na-A type zeolite could be successfully synthesized at $80^{\circ}C$ and $SiO_2/Al_2O_3\;=\;0.80{\sim}1.96$. The cation exchange capacities (CEC) of the zeolites was determined to be about 220 cmol/kg leveled off at the synthetic time more than 10hrs. The adsorption capacities of zeolite to heavy metals (Cd, Cu, Mn and Pb) were high except for As arid Cr. It was also confirmed through the Eh and pH analysis that As and Cr existed in the forms of $HAsO_4^{2-}$ and $CrO_4^{2-}$. The low absorption rates of zeolite for As and Cr are attributed to the fact that the pore size ($4\;{\AA}$) of Na-A type is smaller than those of $HAsO_4^{2-}$ and $CrO_4^{2-}$ ions ($4\;{\AA}$ ionic radii and $8\;{\AA}$ diameter).