• Title/Summary/Keyword: 물성 추정

Search Result 304, Processing Time 0.022 seconds

Identification of Fractional-derivative-model Parameters of Viscoelastic Materials Using an Optimization Technique (최적화 기법을 이용한 점탄성물질의 분수차 미분모델 물성계수 추정)

  • Kim, Sun-Yong;Lee, Doo-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.12 s.117
    • /
    • pp.1192-1200
    • /
    • 2006
  • Viscoelastic damping materials are widely used to reduce noise and vibration because of its low cost and easy implementation, for examples, on the body structure of passenger cars, air planes, electric appliances and ships. To design the damped structures, the material property such as elastic modulus and loss factor is essential information. The four-parameter fractional derivative model well describes the dynamic characteristics of the viscoelastic damping materials with respect to both frequency and temperature. However, the identification procedure of the four-parameter is very time-consuming one. In this study a new identification procedure of the four-parameters is proposed by using an FE model and a gradient-based numerical search algorithm. The identification procedure goes two sequential steps to make measured frequency response functions(FRF) coincident with simulated FRFs: the first one is a peak alignment step and the second one is an amplitude adjustment step. A numerical example shows that the proposed method is useful in identifying the viscoelastic material parameters of fractional derivative model.

Biomechanical Characterization with Inverse FE Model Parameter Estimation: Macro and Micro Applications (유한요소 모델 변수의 역 추정법을 이용한 생체의 물성 규명)

  • Ahn, Bum-Mo;Kim, Yeong-Jin;Shin, Jennifer H.;Kim, Jung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1202-1208
    • /
    • 2009
  • An inverse finite element (FE) model parameter estimation algorithm can be used to characterize mechanical properties of biological tissues. Using this algorithm, we can consider the influence of material nonlinearity, contact mechanics, complex boundary conditions, and geometrical constraints in the modeling. In this study, biomechanical experiments on macro and micro samples are conducted and characterized with the developed algorithm. Macro scale experiments were performed to measure the force response of porcine livers against mechanical loadings using one-dimensional indentation device. The force response of the human liver cancer cells was also measured by the atomic force microscope (AFM). The mechanical behavior of porcine livers (macro) and human liver cancer cells (micro) were characterized with the algorithm via hyperelastic and linear viscoelastic models. The developed models are suitable for computing accurate reaction force on tools and deformation of biomechanical tissues.

Evaluation of Geotechnical Parameters Based on the Design of Optimal Neural Network Structure (최적의 인공신경망 구조 설계를 통한 지반 물성치 추정)

  • Park Hyun-Il;Hwang Dae-Jin;Kweon Gi-Chul;Lee Seung-Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.9
    • /
    • pp.25-34
    • /
    • 2005
  • This paper proposes a selection methodology composed of neural network (NN) and genetic algorithm (GA) to design optimal NN structure. We combine the characteristics of GA and NN to reduce the computational complexity of artificial intelligence applications and increase the precision of NN' prediction in the design of NN structure. Genetic selection approach of design parameters of NN is introduced to obtain optimal NN structure. Analyzed results for geotechnical problems are given to evaluate the performance of the proposed hybrid methodology.

Evaluation of Dynamic Properties of Natural Soils and Pavement Systems Using Surface Wave Technique - Theoretical Dispersion Curves - (표면파기법을 이용한 자연지반 및 포장구조의 동적물성 추정에 관한 연구 - 이론적 분산곡선 -)

  • Kim, Soo Il;Woo, Je Yoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.121-130
    • /
    • 1987
  • A new analytical method to determine the theoretical dispersion curves of Rayleigh wave in multilayered elastic media is developed. The method developed in this study gives the solutions for unlimited frequency, and is essential part of surface wave techniques to evaluate the layer profiles and dynamic properties of soils and pavement systems. Delta-Matrix technique is utilized to overcome the overflow and loss of precision problem inherent in the original Thomson-Haskell formulation at high frequencies. Conventional inversion methods based on the original Thomson-Haskell formulation lead to erroneous results due to the limitations on the layer profiles and the magnitude of frequency. The method developed in this study establishes the base of the research on more accurate and efficient inversion method, especially for the pavement systems as well as the natural soils.

  • PDF

Multivariate Statistical Analysis and Prediction for the Flash Points of Binary Systems Using Physical Properties of Pure Substances (순수 성분의 물성 자료를 이용한 2성분계 혼합물의 인화점에 대한 다변량 통계 분석 및 예측)

  • Lee, Bom-Sock;Kim, Sung-Young
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.3
    • /
    • pp.13-18
    • /
    • 2007
  • The multivariate statistical analysis, using the multiple linear regression(MLR), have been applied to analyze and predict the flash points of binary systems. Prediction for the flash points of flammable substances is important for the examination of the fire and explosion hazards in the chemical process design. In this paper, the flash points are predicted by MLR based on the physical properties of pure substances and the experimental flash points data. The results of regression and prediction by MLR are compared with the values calculated by Raoult's law and Van Laar equation.

  • PDF

Material Property Estimation of Paper for Dynamic Behavior Simulation (동적 거동 시뮬레이션을 위한 종이의 물성치 추정)

  • Lee, Geun-Pyo;Choi, Jin-Hwan;Lee, Soon-Geul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.5
    • /
    • pp.103-111
    • /
    • 2008
  • This study proposes a technique to estimate the material property of a paper by using an experimental methods and commercial CAE software. Under gravitation, if one side of the paper is attached to the ground, the opposite side of paper is largely deformed, and vibrates freely. Since the paper has an orthotropic characteristic due to its treatment, the deformations in two orthogonal directions of the dry paper are different. An experimental method to measure the static deformation of the paper introduces this phenomenon. And dynamic behavior, frequency of free vibration is measured. And then. virtual prototypes that can represent the static and dynamic behavior are modeled by using the commercial CAE software $RecurDyn^{MT}$/MTT3D, which has been widely used by the printer makers. While comparing the deformation and frequency from the experiment and simulation, a design optimization technique in the commercial CAE software of R-INOPL, $RecurDyn^{TM}$/AutoDesign is used to estimate the material property such as Young's modulus, shear modulus and density of the paper.

A Study on Optimization of Physical Properties of Acrylic Pressure Sensitive Adhesives (아크릴 점착제의 최적물성에 관한 연구)

  • Byeon, Sang-Hoon;Kim, Jung-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.3 no.4
    • /
    • pp.678-685
    • /
    • 1992
  • The effects of functional monomers on the pressure sensitive adhesive proporties were studied. Acrylic acid and other monomers were copolymerized by radical solution polymerization and their properties were measured. The desirability function methodology was applied to obtain optimum pressure sensitive adhesive properties. Acrylic acid showed more effective than acrylamide on peel strength increase. On the other hand acrylamide showed more effective than acrylic acid on tack decrease. The optimum monomer ratio of the acrylic pressure sensitive adhesive recipe containing n-butylacrylate 81.7 mole%, acrylic acid 8.0 mole%, acrylamide 2.1 mole% and vinylacetate 8.2 mole% was obtained to result from the statistical analysis with the desirability function methodology. The estimated regression equation of desirability function(D) is as follows: $D=.857+.072X_1-.114X_2-.027X_3-.126X_1{^2}-.046X_1{\cdot}X_2-.063X_1{\cdot}X_3-.152X_2{^2}+.027X2{\cdot}X_3-.120X_3{^2}$ $X_1$:coded acylic acid, $X_2$:coded acylamide, $X_3$:coded vinylacetate

  • PDF

An Estimation Procedure for Concrete Modulus by Using Concrete Strength Relationships in the LTPP Test Sections (콘크리트 물성 정량화식을 이용한 LTPP 구간의 탄성계수 추정방법)

  • Yang, Sung-Chul;Cho, Yoon-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.2
    • /
    • pp.39-46
    • /
    • 2010
  • Concrete strength relationship between various strength properties was presented through experimental data from concretes made from different sources of coarse aggregates and fine aggregates, and different amount of cement contents. In the strength relationship were included compression-flexure, compression-split tension, compression-modulus and flexure-split tension. A total of 61~81 data sets were analyzed while each data set is composed of 3 to 4 experimental test data. Using the proposed strength relations, a procedure to reliably estimate modulus values from the LTPP field test section was suggested. Core specimens were taken from 10 LTPP sections on the expressway as well as 4 sections on the national road. Then compressive strengths and modulus were determined in the lab. Finally concrete modulus was averaged with the estimated values by using the derived relationship and experimental values.

Determination of Mechanical Properties of Galvanized Steel Sheets Using Instrumented Indentation Technique and Finite Element Analysis (계장화 압입시험 및 유한요소해석을 이용한 아연도금강판의 기계적 물성 추정)

  • Jin, Ji-Won;Kwak, Sung-Jong;Kim, Tae-Seong;Noh, Ki-Han;Kang, Ki-Weon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.5
    • /
    • pp.529-535
    • /
    • 2012
  • This paper deals with the determination of mechanical properties of various galvanized steel sheets that are used for fabricating automobile bodies; the instrumented indentation technique and finite element analysis were used for the determination. First, tensile tests were conducted to obtain the true stress-true strain curves of galvanized steel sheets with various thicknesses. Load-deformation curves were then obtained by using the instrumented indentation testing machine, and they were compared with load-deformation curves obtained by finite element analysis. Further, true stress-true strain curves were obtained at the optimal observation point by finite element analysis.

Empirical Rock Strength Logging in Boreholes Penetrating Sedimentary Formations (퇴적암에 대한 경험적 암석강도 추정에 대한 고찰)

  • Chang, Chan-Dong
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.3
    • /
    • pp.174-183
    • /
    • 2004
  • The knowledge of rock strength is important in assessing wellbore stability problems, effective sanding, and the estimation of in situ stress field. Numerous empirical equations that relate unconfined compressive strength of sedimentary rocks (sandstone, shale, and limestone, and dolomite) to physical properties (such as velocity, elastic modulus, and porosity) are collected and reviewed. These equations can be used to estimate rock strength from parameters measurable with geophysical well logs. Their ability to fit laboratory-measured strength and physical property data that were compiled from the literature is reviewed. While some equations work reasonably well (for example, some strength-porosity relationships for sandstone and shale), rock strength variations with individual physical property measurements scatter considerably, indicating that most of the empirical equations are not sufficiently generic to fit all the data published on rock strength and physical properties. This emphasizes the importance of local calibration before one utilizes any of the empirical relationships presented. Nonetheless, some reasonable correlations can be found between geophysical properties and rock strength that can be useful for applications related to wellhole stability where haying a lower bound estimate of in situ rock strength is especially useful.