• Title/Summary/Keyword: 물리화학적 전처리 추출물

Search Result 5, Processing Time 0.019 seconds

Volatile Fatty Acid Production from Saccharina japonica Extracts by Anaerobic Fermentation: Evaluation of Various Environmental Parameters for VFAs Productivity (혐기성 발효에 의한 다시마 추출물로부터 휘발성 유기산 제조: 휘발성 유기산 생산성에 대한 환경적 영향인자 평가)

  • Choi, Jae Hyung;Song, Min Kyung;Chun, Byung Soo;Lee, Chul Woo;Woo, Hee Chul
    • Clean Technology
    • /
    • v.19 no.2
    • /
    • pp.148-155
    • /
    • 2013
  • Volatile fatty acids (VFAs) production from marine brown algae, Saccharina japonica, was investigated in anaerobic dark fermentation. In order to evaluate the VFAs productivity, various experimental parameters (i.e., physicochemical pre-treatment, microorganism inoculation ratio, substrate concentration, and pH) were evaluated. According to the physicochemical pre-treatment methods, the maximum concentrations of VFAs were obtained in the order of sulfuric acid, subcritical water and subcritical water with lipid-extraction. Also, we investigated the operating parameters such as microorganism inoculation ratio (MV/M = 10 to 30), the substrate concentration (18.0 to 72.0 g/L) and pH (6.0 to 7.0) in sulfuric acid pre-treatment method. When the substrate concentrations were 18.0, 36.0, 54.0 and 72.0 g/L at $35^{\circ}C$, microorganism inoculation ratio 15, pH 7.0 for 372 hours, the maximum concentrations of VFAs were respectively 9.8, 13.9, 18.6 and 22.3 g/L. The change in VFAs concentrations was detected that acetic- and propionic acids increased according to increasing pH, while the butyric acid increased with decreasing pH. The VFAs obtained from concentration and separation process may be used as basic chemistry materials and bio-fuel, and they will expect to produce alternative energy of fossil fuel.

Analysis of Chemical and Physical Characteristics of Log Woods for Oak Mushroom Production Depending on Cultivation Periods and Steam Explosion Treatment (표고버섯 골목의 사용연수에 따른 화학적, 물리적 성상 및 폭쇄처리 후 변화 관찰)

  • Koo, Bon-Wook;Park, Jun-Yeong;Lee, Soo-Min;Choi, Don-Ha;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.1 s.129
    • /
    • pp.77-86
    • /
    • 2005
  • In order to investigate the ability of log wood for oak mushroom production as a source of an alternative energy, both chemical and physical characteristics of log wood were investigated according to the cultivation periods. Also, both chemical and physical characteristics of material that treated by steam explosion were investigated to confirm the pretreatment effect by remaining enzyme as a control. The contents of ash, water-, alkali- and organic soluble extracts have been increased after the inoculation. It appeard that holocellulose contents substantially decreased and the contents of lignin as another main component of wood remained constant after the inoculation. However this result implied that indeed, a sufficient amount of lignin has been degraded paritially by enzymes of oak mushroom Lentinus edodes if we consider that the amount of holocelulose was substantially reduced. It also indicated that the degree of degradation gradually progressed but crystallinity decreased after the inoculation. The contents of water-, alkali- and organic soluble extracts have been increased by steam explosion. Holocellulose contents increased within narrow limits and lignin contents remained constant. However the contents of holocellulose and lignin have been decreased by steam explosion, considering that the amount of other extractives was relatively increased. The degree of crystallinity and lignin contents reduction by steam explosion was almost similar to the result obtained by increasing cultivation periods. According to the results, log woods for mushroom production have a potential as material for developing alternative energy.

Improvement of an Analytical Method for Methoprene in Livestock Products using LC-MS/MS (LC-MS/MS를 이용한 축산물 중 살충제 메토프렌의 잔류분석법 개선)

  • Park, Eun-Ji;Kim, Nam Young;Park, So-Ra;Lee, Jung Mi;Jung, Yong Hyun;Yoon, Hae Jung
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.3
    • /
    • pp.136-142
    • /
    • 2022
  • The research aims to develop a rapid and easy analytical method for methoprene using liquid chromatography-tandem mass spectrometry (LC-MS/MS). A simple, highly sensitive, and specific analytical method for the determination of methoprene in livestock products (beef, pork, chicken, milk, eggs, and fat) was developed. Methoprene was effectively extracted with 1% acetic acid in acetonitrile and acetone (1:1), followed by the addition of anhydrous magnesium sulfate (MgSO4) and anhydrous sodium acetate. Subsequently, the lipids in the livestock sample were extracted by freezing them at -20℃. The extracts were cleaned using MgSO4, primary secondary amine (PSA), and octadecyl (C18), which were then centrifuged to separate the supernatant. Nitrogen gas was used to evaporate the supernatant, which was then dissolved in methanol. The matrix-matched calibration curves were constructed using 8 levels (1, 2.5, 5, 10, 25, 50, 100, 150 ng/mL) and the coefficient of determination (R2) was above 0.9964. Average recoveries spiked at three levels (0.01, 0.1, and 0.5 mg/kg), and ranged from 79.5-105.1%, with relative standard deviations (RSDs) smaller than 14.2%, as required by the Codex guideline (CODEX CAC/GL 40). This study could be useful for residue safety management in livestock products.

Development and Validation of a Simultaneous Analytical Method for 5 Residual Pesticides in Agricultural Products using GC-MS/MS (GC-MS/MS를 이용한 농산물 중 잔류농약 5종 동시시험법 개발 및 검증)

  • Park, Eun-Ji;Kim, Nam Young;Shim, Jae-Han;Lee, Jung Mi;Jung, Yong Hyun;Oh, Jae-Ho
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.3
    • /
    • pp.228-238
    • /
    • 2021
  • The aim of this research was to develop a rapid and easy multi-residue method for determining dimethipin, omethoate, dimethipin, chlorfenvinphos and azinphos-methyl in agricultural products (hulled rice, potato, soybean, mandarin and green pepper). Samples were prepared using QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) and analyzed using gas chromatography-tandem mass spectrometry (GC-MS/MS). Residual pesticides were extracted with 1% acetic acid in acetonitrile followed by addition of anhydrous magnesium sulfate (MgSO4) and anhydrous sodium acetate. The extracts were cleaned up using MgSO4, primary secondary amine (PSA) and octadecyl (C18). The linearity of the calibration curves, which waas excellent by matrix-matched standards, ranged from 0.005 mg/kg to 0.3 mg/kg and yielded the coefficients of determination (R2) ≥ 0.9934 for all analytes. Average recoveries spiked at three levels (0.01, 0.1, 0.5 mg/kg) and were in the range of 74.2-119.3%, while standard deviation values were less than 14.6%, which is below the Codex guideline (CODEX CAC/GL 40).

Development and Validation of an Analytical Method for Fungicide Fluoxastrobin Determination in Agricultural Products (농산물 중 살균제 Fluoxastrobin의 시험법 개발 및 유효성 검증)

  • So Eun, Lee;Su Jung, Lee;Sun Young, Gu;Chae Young, Park;Hye-Sun, Shin;Sung Eun, Kang;Jung Mi, Lee;Yun Mi, Chung;Gui Hyun, Jang;Guiim, Moon
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.6
    • /
    • pp.373-384
    • /
    • 2022
  • Fluoxastrobin a fungicide developed from Strobilurus species mushroom extracts, can be used as an effective pesticide to control fungal diseases. In this study, we optimized the extraction and purification of fluoxastrobin according to its physical and chemical properties using the QuEChERS method and developed an LC-MS/MS-based analysis method. For extraction, we used acetonitrile as the extraction solvent, along with MgSO4 and PSA. The limit of quantitation of fluoxastrobin was 0.01 mg/kg. We used 0.01, 0.1, and 0.5 mg/kg of five representative agricultural products and treated them with fluoxastrobin. The coefficients of determination (R2) of fluoxastrobin and fluoxastrobin Z isomer were > 0.998. The average recovery rates of fluoxastrobin (n=5) and fluoxastrobin Z isomer were 75.5-100.3% and 75.0-103.9%, respectively. The relative standard deviations (RSDs) were < 5.5% and < 4.3% for fluoxastrobin and fluoxastrobin Z isomer, respectively. We also performed an interlaboratory validation at Gwangju Regional Food and Drug Administration and compared the recovery rates and RSDs obtained for fluoxastrobin and fluoxastrobin Z isomer at the external lab with our results to validate our analysis method. In the external lab, the average recovery rates and RSDs of fluoxastrobin and fluoxastrobin Z isomer at each concentration were 79.5-100.5% and 78.8-104.7% and < 18.1% and < 10.2%, respectively. In all treatment groups, the concentrations were less than those described by the 'Codex Alimentarius Commission' and the 'Standard procedure for preparing test methods for food, etc.'. Therefore, fluoxastrobin is safe for use as a pesticide.