• Title/Summary/Keyword: 물동량예측

Search Result 83, Processing Time 0.022 seconds

Forecasting the Trading Volumes of Marine Transport and Ports Logistics Policy -Using Multiplicative Seasonal ARIMA Model- (해상운송의 물동량 예측과 항만물류정책 -승법 계절 ARIMA 모형을 이용하여-)

  • Kim, Chang-Beom
    • Journal of Korea Port Economic Association
    • /
    • v.23 no.1
    • /
    • pp.149-162
    • /
    • 2007
  • The purpose of this study is to forecast the marine trading volumes using multiplicative seasonal Autoregressive Integrated Moving Average(ARIMA) model. The paper proceeds by comparing the forecasting performances of the unload volumes with those of the load volumes with Box-Jenkins ARIMA model. Also, I present the predicted values based on the ARIMA model. The result shows that the trading volumes increase very slowly.

  • PDF

Evaluation of the Utilization Potential of High-Resolution Optical Satellite Images in Port Ship Management: A Case Study on Berth Utilization in Busan New Port (고해상도 광학 위성영상의 항만선박관리 활용 가능성 평가: 부산 신항의 선석 활용을 대상으로)

  • Hyunsoo Kim ;Soyeong Jang ;Tae-Ho Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1173-1183
    • /
    • 2023
  • Over the past 20 years, Korea's overall import and export cargo volume has increased at an average annual rate of approximately 5.3%. About 99% of the cargo is still being transported by sea. Due to recent increases in maritime cargo volume, congestion in maritime logistics has become challenging due to factors such as the COVID-19 pandemic and conflicts. Continuous monitoring of ports has become crucial. Various ground observation systems and Automatic Identification System (AIS) data have been utilized for monitoring ports and conducting numerous preliminary studies for the efficient operation of container terminals and cargo volume prediction. However, small and developing countries' ports face difficulties in monitoring due to environmental issues and aging infrastructure compared to large ports. Recently, with the increasing utility of artificial satellites, preliminary studies have been conducted using satellite imagery for continuous maritime cargo data collection and establishing ocean monitoring systems in vast and hard-to-reach areas. This study aims to visually detect ships docked at berths in the Busan New Port using high-resolution satellite imagery and quantitatively evaluate berth utilization rates. By utilizing high-resolution satellite imagery from Compact Advanced Satellite 500-1 (CAS500-1), Korea Multi-Purpose satellite-3 (KOMPSAT-3), PlanetScope, and Sentinel-2A, ships docked within the port berths were visually detected. The berth utilization rate was calculated using the total number of ships that could be docked at the berths. The results showed variations in berth utilization rates on June 2, 2022, with values of 0.67, 0.7, and 0.59, indicating fluctuations based on the time of satellite image capture. On June 3, 2022, the value remained at 0.7, signifying a consistent berth utilization rate despite changes in ship types. A higher berth utilization rate indicates active operations at the berth. This information can assist in basic planning for new ship operation schedules, as congested berths can lead to longer waiting times for ships in anchorages, potentially resulting in increased freight rates. The duration of operations at berths can vary from several hours to several days. The results of calculating changes in ships at berths based on differences in satellite image capture times, even with a time difference of 4 minutes and 49 seconds, demonstrated variations in ship presence. With short observation intervals and the utilization of high-resolution satellite imagery, continuous monitoring within ports can be achieved. Additionally, utilizing satellite imagery to monitor changes in ships at berths in minute increments could prove useful for small and developing country ports where harbor management is not well-established, offering valuable insights and solutions.

Analysis of Trip Length Distribution between Commodity-Based Model and Truck Trip-Based Model in Seoul Metropolitan Area (화물기반모형과 트럭통행기반모형의 통행거리분포 분석에 관한 연구)

  • 권혁구;김건영;임홍상;강경우
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.2
    • /
    • pp.125-134
    • /
    • 2002
  • 도시화물수요예측모형에는 화물기반모형과 트럭통행기반모형이 있는데 화물기반모형은 화물체계가 기본적으로 화물운송과 관계가 있다는 개념에 기초를 두고 있으며, 차량이 아닌 화물의 움직임을 주요 분석대상으로 삼고 있다. 반면에, 트럭통행기반모형은 집합화된 독립변수를 이용하여 각 죤(Zone)에 유·출입하는 트럭의 통행을 분석하는 것이다. 본 연구의 목적은 트럭통행기반모형의 O-D 추정시 화물통행과 트럭통행 사이의 관계식을 산출하고 이를 설명할 수 있는 통행거리분포함수(Trip Length Distribution : TLD)를 추정함에 있다. 본 연구의 자료는 교통개발연구원에서 수행한 '서울시 물류조사 및 물류종합계획수립구상(1998)'의 화물 물동량 조사 자료를 이용하였으며, 이를 통해 통행거리분포에 따르는 화물 및 차량의 비율을 함수로서 나타내었다. 본 연구를 통하여 트럭통행기반모형에서 트럭통행거리분포를 이용하여 화물기반모형에서 도출할 수 있는 화물의 통행거리분포를 추정할 수 있었으며, 또한 각각의 통행거리분포는 감마분포를 이용하여 함수식으로 도출하고 상기한 두 가지 분포모형을 하나의 관계식을 통해 재산정할 수 있는 이론적인 틀을 제공하였다는 데 의의가 있다고 하겠다. 트럭통행거리분포, 화물통행거리분포 모두 통계적인 검증을 통해 적합한 것으로 분석되었으며, 전체화물의 통행거리분포와 매개함수를 통해 재산정된 모형의 결과 값 또한 통계적으로 유의하였다. 품목별 적용에서는 잡공업품과 화학공업품은 본 연구의 매개함수식을 통해 화물거리분포 모형이 적합하였으나 금속공업 품과 경공업품은 다소 차이가 있는 것으로 분석되었다.

The Logistics Infrastructure for the Exploitation of Saemangeum New Port (새만금 신항 개발을 위한 물류인프라 구축방향)

  • Hwang, Ho-Man
    • Journal of Korea Port Economic Association
    • /
    • v.25 no.4
    • /
    • pp.63-82
    • /
    • 2009
  • The purpose of this study is to construct the logistics infrastructure for the exploitation of Saemangeum New Port that will be constructed in near future. To accomplish the purpose, this paper grasp the change of port logistics circumstances firstly. find out the project of the new port and construct the logistics infrastructure for the new port with the basic facts of the port competitiveness. The construction of the logistics infrastructure for the exploitation of Saemangeum New Port will be conducted as follows ; (1) Construction of logistics environment (2) Planning the port marketing for the extension a logistic market share (3) Construction of logistics chain and IT Network and finally (4) Construction of logistics community.

  • PDF

Short-Term Prediction Model of Postal Parcel Traffic based on Self-Similarity (자기 유사성 기반 소포우편 단기 물동량 예측모형 연구)

  • Kim, Eunhye;Jung, Hoon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.76-83
    • /
    • 2020
  • Postal logistics organizations are characterized as having high labor intensity and short response times. These characteristics, along with rapid change in mail volume, make load scheduling a fundamental concern. Load analysis of major postal infrastructures such as post offices, sorting centers, exchange centers, and delivery stations is required for optimal postal logistics operation. In particular, the performance of mail traffic forecasting is essential for optimizing the resource operation by accurate load analysis. This paper addresses a traffic forecast problem of postal parcel that arises at delivery stations of Korea Post. The main purpose of this paper is to describe a method for predicting short-term traffic of postal parcel based on self-similarity analysis and to introduce an application of the traffic prediction model to postal logistics system. The proposed scheme develops multiple regression models by the clusters resulted from feature engineering and individual models for delivery stations to reinforce prediction accuracy. The experiment with data supplied by main postal delivery stations shows the advantage in terms of prediction performance. Comparing with other technique, experimental results show that the proposed method improves the accuracy up to 45.8%.

Throughput Prediction of Pohang Port using Time Series Data: Application of SARIMA, Prophet and Neural Prophet (시계열 데이터를 활용한 포항항 물동량 예측: SARIMA, Prophet, Neural Prophet의 적용)

  • Jin-Ho Oh;Jeong-Won Choi;Tae-Hyun Kang;Young-Joon Seo;Dong-Wook Kwak
    • Korea Trade Review
    • /
    • v.47 no.6
    • /
    • pp.291-305
    • /
    • 2022
  • In this study, the volume of Pohang Port was predicted. All cargo of Pohang port, iron ore, steel, and bituminous coals were selected as prediction targets. SARIMA, Prophet, and Neural Prophet were used as analysis methods. The predictive power of each model was verified, and a predictive model with high performance was used to predict the volume of goods in Pohang port. As a result of the analysis, it was found that Neural Prophet showed the highest performance in all predictive power. As a result of predicting the future volume of goods until August 2027 using Neural Prophet, it was found that the volume of all items in Pohang port was decreasing. In particular, it was analyzed that the decline in steel cargo was steep. In order to increase the volume of cargo at Pohang port, it is necessary to diversify the cargo handled at Pohang port and check the policy of increasing the volume of cargo.

Strategic Considerations for Development of Gunsan(Saemangum) Port in terms of China (중국효과에 따른 새만금항만의 전략적 발전가능성 모색)

  • Yeo, Gi-Tae;Seo, Su-Wan
    • Journal of Korea Port Economic Association
    • /
    • v.24 no.4
    • /
    • pp.139-152
    • /
    • 2008
  • China's rapid growth of economy and developing logistics facilities such as sea and air ports can give the good effects to increase the trade and logistics cargo volumes within Pan Yellow Sea Economic Bloc which consists of Korea, China, Japan and Russia. These phenomenon also stimulate the development of the West Coastal Integrated Belt in South Korea. In the past 20th century, South Korea's advanced and developed areas were located on the Kyeong-Bu Axis, the straight line of Seoul and Busan. However, due to the china's effect, this axis is moving into the West Coast area between Incheon (Seoul) and Mokpo, which is closely located to China. In this aspect, sea ports located in West Coast of Korea have shown the steep increase in container and non-container cargo volumes. With regard to the changing environments in sea ports, this paper's aim is to investigate the developing potential of Gunsan (Saemangum) area located on mid of West Coast. As results, targeted area have shown the potential in terms of port network, supply chain management and transferring location for container cargoes. Moreover, for implementing the suitable roles, construction of New Saemangun port, closely located in Gunsan port, is needed to overcome the limitations of Gunsan port.

  • PDF

Effect of Supply Chain Risk on Port Container Throughput: Focusing on the Case of Busan Port (공급망 리스크가 항만 컨테이너 물동량에 미치는 영향에 관한 연구: 부산항 사례를 중심으로)

  • Kim, Sung-Ki;Kim, Chan-Ho
    • Journal of Korea Port Economic Association
    • /
    • v.39 no.2
    • /
    • pp.25-39
    • /
    • 2023
  • As the scope of supply chains expands globally, unpredictable risks continue to arise. The occurrence of these supply chain risks affects port cargo throughput and hinders port operation. In order to examine the impact of global supply chain risks on port container throughput, this study conducted an empirical analysis on the impact of variables such as the Global Supply Chain Pressure Index (GSCPI), Shanghai Container Freight Index (SCFI), Industrial Production Index, and Retail Sales Index on port traffic using the vector autoregressive(VAR) model. As a result of the analysis, the rise in GSCPI causes a short-term decrease in the throughput of Busan Port, but after a certain point, it acts as a factor increasing the throughput and affects it in the form of a wave. In addition, the industrial production index and the retail sales index were found to have no statistically significant effect on the throughput of Busan Port. In the case of SCFI, the effect was almost similar to that of GSCPI. The results of this study reveal how risks affect port cargo throughput in a situation where supply chain risks are gradually increasing, providing many implications for establishing port operation policies for future supply chain risks.

A Study on the Future Traffic Volume Estimation for Kwangyang Port Using The Consideration Factors of Marine Traffic Engineering (해상교통공학적 고려 요소를 이용한 광양항의 장래교통량 예측에 대한 연구)

  • Park, Young-Soo;Kim, Jong-Soo;Park, Jin-Soo
    • Journal of Navigation and Port Research
    • /
    • v.31 no.6
    • /
    • pp.447-454
    • /
    • 2007
  • To assess the port development and maritime traffic environment, the future traffic volume has been estimated using the number of inbound and outbound vessel for a specific port. The estimation of future traffic volume should be considered as an important factor to establish the degree of fairway congestion, the determination of fairway width and the operational role. Until now, the number of in and out vessel for the port has been only estimated mainly, but the type and size of inbound and outbound ships are different depending on the port's characteristics. So, it is difficult to estimate the future traffic volume using the change of only one item. This paper calculates the future traffic volume using the marine traffic characteristic factors as the number of coastal ship and ocean-going ship, the size of ship and the change of cargo volume per a ship etc. And it compared with the results of Artificial Neural Network(ANN) for accurate identification of nonlinear system.

Forecasting Export & Import Container Cargoes using a Decision Tree Analysis (의사결정나무분석을 이용한 컨테이너 수출입 물동량 예측)

  • Son, Yongjung;Kim, Hyunduk
    • Journal of Korea Port Economic Association
    • /
    • v.28 no.4
    • /
    • pp.193-207
    • /
    • 2012
  • The of purpose of this study is to predict export and import container volumes using a Decision Tree analysis. Factors which can influence the volume of container cargo are selected as independent variables; producer price index, consumer price index, index of export volume, index of import volume, index of industrial production, and exchange rate(won/dollar). The period of analysis is from january 2002 to December 2011 and monthly data are used. In this study, CRT(Classification and Regression Trees) algorithm is used. The main findings are summarized as followings. First, when index of export volume is larger than 152.35, monthly export volume is predicted with 858,19TEU. However, when index of export volume is between 115.90 and 152.35, monthly export volume is predicted with 716,582TEU. Second, when index of import volume is larger than 134.60, monthly import volume is predicted with 869,227TEU. However, when index of export volume is between 116.20 and 134.60, monthly import volume is predicted with 738,724TEU.