• Title/Summary/Keyword: 문턱전압이하 전류

Search Result 65, Processing Time 0.022 seconds

Analysis of Subthreshold Swing for Channel Doping of Asymmetric Double Gate MOSFET (비대칭 이중게이트 MOSFET의 채널도핑에 따른 문턱전압이하 스윙 분석)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.651-656
    • /
    • 2014
  • This paper analyzed the change of subthreshold swing for channel doping of asymmetric double gate(DG) MOSFET. The subthreshold swing is the factor to describe the decreasing rate of off current in the subthreshold region, and plays a very important role in application of digital circuits. Poisson's equation was used to analyze the subthreshold swing for asymmetric DGMOSFET. Asymmetric DGMOSFET could be fabricated with the different top and bottom gate oxide thickness and bias voltage unlike symmetric DGMOSFET. It is investigated in this paper how the doping in channel, gate oxide thickness and gate bias voltages for asymmetric DGMOSFET influenced on subthreshold swing. Gaussian function had been used as doping distribution in solving the Poisson's equation, and the change of subthreshold swing was observed for projected range and standard projected deviation used as parameters of Gaussian distribution. Resultly, the subthreshold swing was greatly changed for doping concentration and profiles, and gate oxide thickness and bias voltage had a big impact on subthreshold swing.

Analysis of Channel Doping Concentration Dependent Subthreshold Characteristics for Double Gate MOSFET (이중게이트 MOSFET에서 채널도핑농도에 따른 문턱전압이하 특성 분석)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.10
    • /
    • pp.1840-1844
    • /
    • 2008
  • In this paper, the influence of channel doping concentration, which the most important factor is as double gate MOSFET is fabricated, on transport characteristics has been analyzed in the subthreshold region. The analytical model is used to derive transport model based on Poisson equation. The thermionic omission and tunneling current to have an influence on subthreshold current conduction are analyzed, and the relationship of doping concentration and subthreshold swings of this paper are compared with those of Medici two dimensional simulation, to verify this model. As a result, transport model presented in this paper is good agreement with two dimensional simulation model, and the transport characteristics have been considered according to the dimensional parameters of double gate MOSFET.

Influence of Tunneling Current on Threshold voltage Shift by Channel Length for Asymmetric Double Gate MOSFET (비대칭 DGMOSFET에서 터널링 전류가 채널길이에 따른 문턱전압이동에 미치는 영향)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.7
    • /
    • pp.1311-1316
    • /
    • 2016
  • This paper analyzes the influence of tunneling current on threshold voltage shift by channel length of short channel asymmetric double gate(DG) MOSFET. Tunneling current significantly increases by decrease of channel length in the region of 10 nm below, and the secondary effects such as threshold voltage shift occurs. Threshold voltage shift due to tunneling current is not negligible even in case of asymmetric DGMOSFET to develop for reduction of short channel effects. Off current consists of thermionic and tunneling current, and the ratio of tunneling current is increasing with reduction of channel length. The WKB(Wentzel-Kramers-Brillouin) approximation is used to obtain tunneling current, and potential distribution in channel is hermeneutically derived. As a result, threshold voltage shift due to tunneling current is greatly occurred for decreasing of channel length in short channel asymmetric DGMOSFET. Threshold voltage is changing according to bottom gate voltages, but threshold voltage shifts is nearly constant.

Analysis of Off Current for Conduction Path of Asymmetric Double Gate MOSFET (전도중심에 따른 비대칭 이중게이트 MOSFET의 차단전류 분석)

  • Jung, Hakkee;Kwon, Ohshin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.759-762
    • /
    • 2014
  • 비대칭 이중게이트(double gate; DG) MOSFET는 단채널 효과를 감소시킬 수 있는 새로운 구조의 트랜지스터이다. 본 연구에서는 비대칭 DGMOSFET의 전도중심에 따른 차단전류를 분석하고자 한다. 전도중심은 채널 내 캐리어의 이동이 발생하는 상단게이트에서의 평균거리로써 상하단 게이트 산화막 두께를 달리 제작할 수 있는 비대칭 DGMOSFET에서 산화막 두께에 따라 변화하는 요소이며 상단 게이트 전압에 따른 차단전류에 영향을 미치고 있다. 전도중심을 구하고 이를 이용하여 상단 게이트 전압에 따른 차단전류를 계산함으로써 전도중심이 차단전류에 미치는 영향을 산화막 두께 및 채널길이 등을 파라미터로 분석할 것이다. 차단전류를 구하기 위하여 포아송방정식으로부터 급수 형태의 해석학적 전위분포를 유도하였다. 결과적으로 전도중심의 위치에 따라 차단전류는 크게 변화하였으며 이에 따라 문턱전압 및 문턱전압이하 스윙이 변화하는 것을 알 수 있었다.

  • PDF

Analysis of Subthreshold Swing for Double Gate MOSFET Using Gaussian Function (가우스함수를 이용한 DGMOSFET의 문턱전압이하 스윙분석)

  • Jung, Hak-Kee;Han, Ji-Hyung;Lee, Jae-Hyung;Jeong, Dong-Soo;Lee, Jong-In;Kwon, Oh-Shin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.681-684
    • /
    • 2011
  • In this paper, the relationship of potential and charge distribution in channel for double gate(DG) MOSFET has been derived from Poisson's equation using Gaussian function. The subthreshold swing has been investigated according to projected range and standard projected deviation, variables of Gaussian function. The analytical potential distribution model has been derived from Poisson's equation, and subthreshold swing has been obtained from this model. The subthreshold swing has been defined as the derivative of gate voltage to drain current and is theoretically minimum of 60mS/dec, and very important factor in digital application. Those results of this potential model are compared with those of numerical simulation to verify this model. As a result, since potential model presented in this paper is good agreement with numerical model, the subthreshold swings have been analyzed according to the shape of Gaussian function.

  • PDF

Analysis of Subthreshold Swing for Oxide Thickness and Doping Distribution in DGMOSFET (산화막두께 및 도핑분포에 대한 DGMOSFET의 문턱전압이하 스윙분석)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.10
    • /
    • pp.2217-2222
    • /
    • 2011
  • In this paper, the relationship of potential and charge distribution in channel for double gate(DG) MOSFET has been derived from Poisson's equation using Gaussian function. The relationship of subthreshold swing and oxide thickness has been investigated according to variables of doping distribution using Gaussian function, i.e. projected range and standard projected deviation, The analytical potential distribution model has been derived from Poisson's equation, and subthreshold swing has been obtained from this model for the change of oxide thickness. The subthreshold swing has been defined as the derivative of gate voltage to drain current and is theoretically minimum of 60 mS/dec, and very important factor in digital application. Those results of this potential model are compared with those of numerical simulation to verify this model. As a result, since potential model presented in this paper is good agreement with numerical model, the relationship of subthreshold swing and oxide thickness have been analyzed according to the shape of doping distribution.

Analysis of On-Off Voltage △Von-off in Sub-10 nm Junctionless Cylindrical Surrounding Gate MOSFET (10 nm 이하 무접합 원통형 MOSFET의 온-오프전압△Von-off에 대한 분석)

  • Jung, Hak-kee
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.29-34
    • /
    • 2019
  • We investigated on-off voltage ${\Delta}V_{on-off}$ of sub-10 nm JLCSG (Junctionless Cylindrical Surrounding Gate) MOSFET. The gate voltage was defined as ON voltage for the subthreshold current of $10^{-7}A$ and OFF voltage for the subthreshold current of $10^{-12}A$, and the difference between ON and OFF voltage was obtained. Since the tunneling current was not negligible at 10 nm or less, we observe the change of ${\Delta}V_{on-off}$ depending on the presence or absence of the tunneling current. For this purpose, the potential distribution in the channel was calculated using the Poisson equation and the tunneling current was calculated using the WKB approximation. As a result, it was found that ${\Delta}V_{on-off}$ was increased due to the tunneling current in JLCSG MOSFETs below 10 nm. Especially, it increased rapidly with channel lengths less than 8 nm and increased with increasing channel radius and oxide thickness.

Deviation of Threshold Voltage and Conduction Path for the Ratio of Top and Bottom Oxide Thickness of Asymmetric Double Gate MOSFET (비대칭 DGMOSFET의 상하단 산화막 두께비에 따른 문턱전압 및 전도중심의 변화)

  • Jung, Hakkee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.765-768
    • /
    • 2014
  • 본 연구에서는 비대칭 이중게이트 MOSFET의 상하단 게이트 산화막 두께 비에 대한 문턱전압 및 전도중심의 변화에 대하여 분석하고자한다. 비대칭 이중게이트 MOSFET는 상하단 게이트 산화막의 두께를 다르게 제작할 수 있어 문턱전압이하 영역에서 전류를 제어할 수 있는 요소가 증가하는 장점이 있다. 상하단 게이트 산화막 두께 비에 대한 문턱전압 및 전도중심을 분석하기 위하여 포아송방정식을 이용하여 해석학적 전위분포를 구하였다. 이때 전하분포는 가우스분포함수를 이용하였다. 하단게이트 전압, 채널길이, 채널두께, 이온주입범위 및 분포편차를 파라미터로 하여 문턱전압 및 전도중심의 변화를 관찰한 결과, 문턱전압은 상하단 게이트 산화막 두께 비에 따라 큰 변화를 나타냈다. 특히 채널길이 및 채널두께의 절대값보다 비에 따라 문턱전압이 변하였으며 전도중심이 상단 게이트로 이동할 때 문턱전압은 증가하였다. 또한 분포편차보단 이온주입범위에 따라 문턱전압 및 전도중심이 크게 변화하였다.

  • PDF

Analysis of Transport Characteristics for Double Gate MOSFET using Analytical Current-Voltage Model (해석학적 전류-전압모델을 이용한 이중게이트 MOSFET의 전송특성분석)

  • Jung Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.9
    • /
    • pp.1648-1653
    • /
    • 2006
  • In this paper, transport characteristics have been investigated using analytical current-voltage model for double gate MOSFET(DGMOSFET). Scaling down to 100nm of gate length for MOSFET can bring about various problems such as a threshold voltage roll-off and increasing off current by tunneling since thickness of oxide is down by 1.fnm and doping concentration is increased. A current-voltage characteristics have been calculated according to changing of channel length,using analytical current-voltage relation. The analytical model has been verified by calculating I-V relation according to changing of oxide thickness and channel thickness as well as channel length. A current-voltage characteristics also have been compared and analyzed for operating temperature. When gate voltage is 2V, it is shown that a current-voltage characteristic in 77K is superior to in room temperature.

Relation of Short Channel Effect and Scaling Theory for Double Gate MOSFET in Subthreshold Region (문턱전압이하 영역에서 이중게이트 MOSFET의 스켈링 이론과 단채널효과의 관계)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.7
    • /
    • pp.1463-1469
    • /
    • 2012
  • This paper has presented the influence of scaling theory on short channel effects of double gate(DG) MOSFET in subthreshold region. In the case of conventional MOSFET, to preserve constantly output characteristics,current and switching frequency have been analyzed based on scaling theory. To analyze the results of application of scaling theory for short channel effects of DGMOSFET, the changes of threshold voltage, drain induced barrier height and subthreshold swing have been observed according to scaling factor. The analytical potential distribution of Poisson equation already verified has been used. As a result, it has been observed that threshold voltage among short channel effects is grealty changed according to scaling factor. The best scaling theory for DGMOSFET has been explained as using modified scaling theory, applying weighting factor reflected the influence of two gates when scaling theory has been applied for channel length.