• Title/Summary/Keyword: 문장 클러스터링

Search Result 29, Processing Time 0.022 seconds

A Clustering Method using Dependency Structure and Part-Of-Speech(POS) for Japanese-English Statistical Machine Translation (일영 통계기계번역에서 의존문법 문장 구조와 품사 정보를 사용한 클러스터링 기법)

  • Kim, Han-Kyong;Na, Hwi-Dong;Lee, Jin-Ji;Lee, Jong-Hyeok
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.12
    • /
    • pp.993-997
    • /
    • 2009
  • Clustering is well known method and that can be used in statistical machine translation. In this paper we propose a corpus clustering method using syntactic structure and POS information of dependency grammar. And using this cluster language model as additional feature to phrased-based statistical machine translation system to improve translation Quality.

Integrated Clustering Method based on Syntactic Structure and Word Similarity for Statistical Machine Translation (문장구조 유사도와 단어 유사도를 이용한 클러스터링 기반의 통계기계번역)

  • Kim, Hankyong;Na, Hwi-Dong;Li, Jin-Ji;Lee, Jong-Hyeok
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.44-49
    • /
    • 2009
  • 통계기계번역에서 도메인에 특화된 번역을 시도하여 성능향상을 얻는 방법이 있다. 이를 위하여 문장의 유형이나 장르에 따라 클러스터링을 수행한다. 그러나 기존의 연구 중 문장의 유형 정보와 장르에 따른 정보를 동시에 사용한 경우는 없었다. 본 논문에서는 문장 사이의 문법적 구조 유사성으로 문장을 유형별로 분류하는 새로운 기법을 제시하였고, 단어 유사도 정보로 문서의 장르를 구분하여 기존의 두 기법을 통합하였다. 이렇게 분류된 말뭉치에서 추출한 모델과 전체 말뭉치에서 추출된 모델에서 보간법(interpolation)을 사용하여 통계기계번역의 성능을 향상하였다. 문장구조의 유사성과 단어 유사도 계산을 위하여 각각 커널과 코사인 유사도를 적용하였으며, 두 유사도를 적용하여 말뭉치를 분류하는 과정은 K-Means 알고리즘과 유사한 기계학습 기법을 사용하였다. 이를 일본어-영어의 특허문서에서 실험한 결과 최선의 경우 약 2.5%의 상대적인 성능 향상을 얻었다.

  • PDF

A Text Summarization Model Based on Sentence Clustering (문장 클러스터링에 기반한 자동요약 모형)

  • 정영미;최상희
    • Journal of the Korean Society for information Management
    • /
    • v.18 no.3
    • /
    • pp.159-178
    • /
    • 2001
  • This paper presents an automatic text summarization model which selects representative sentences from sentence clusters to create a summary. Summary generation experiments were performed on two sets of test documents after learning the optimum environment from a training set. Centroid clustering method turned out to be the most effective in clustering sentences, and sentence weight was found more effective than the similarity value between sentence and cluster centroid vectors in selecting a representative sentence from each cluster. The result of experiments also proves that inverse sentence weight as well as title word weight for terms and location weight for sentences are effective in improving the performance of summarization.

  • PDF

Document Summarization Based on Sentence Clustering Using Graph Division (그래프 분할을 이용한 문장 클러스터링 기반 문서요약)

  • Lee Il-Joo;Kim Min-Koo
    • The KIPS Transactions:PartB
    • /
    • v.13B no.2 s.105
    • /
    • pp.149-154
    • /
    • 2006
  • The main purpose of document summarization is to reduce the complexity of documents that are consisted of sub-themes. Also it is to create summarization which includes the sub-themes. This paper proposes a summarization system which could extract any salient sentences in accordance with sub-themes by using graph division. A document can be represented in graphs by using chosen representative terms through term relativity analysis based on co-occurrence information. This graph, then, is subdivided to represent sub-themes through connected information. The divided graphs are types of sentence clustering which shows a close relationship. When salient sentences are extracted from the divided graphs, summarization consisted of core elements of sentences from the sub-themes can be produced. As a result, the summarization quality will be improved.

Extracting Representative Sentences about Tourist Sites Using a Clustering Method (클러스터링 기법을 활용한 관광지 대표문장 추출)

  • Kim, DaHee;Lee, KangWoo;Lim, JiWon;Hong, Soon-Goo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.677-680
    • /
    • 2021
  • '파리의 더러운 지하철', '런던의 비싼 물가' 등 관광지에 대한 몇 마디 말은 관광지를 직관적으로 이해하는데 도움을 준다. 관광지에 대한 직관적 평가를 파악하기 위해서 클러스터링 기법을 사용하였다. '주차', '경치', '시설'과 같은 다양한 라벨을 부여하여 클러스터링을 비교한 결과 '주차', '경치' 등 비슷한 문맥의 리뷰가 같은 클러스터로 묶인 것을 확인할 수 있었고, 각 분야의 문맥을 파악하기 위해 대표문장을 추출하였다. 각 분야의 대표문장은 해당 분야의 평가를 잘 파악할 수 있었고, 해당분야의 만족도뿐만 아니라 불편사항 등을 이해하는데 도움을 준다.

Sentence Interaction-based Document Similarity Models for News Clustering (뉴스 클러스터링을 위한 문장 간 상호 작용 기반 문서 쌍 유사도 측정 모델들)

  • Choi, Seonghwan;Son, Donghyun;Lee, Hochang
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.401-407
    • /
    • 2020
  • 뉴스 클러스터링에서 두 문서 간의 유사도는 클러스터의 특성을 결정하는 중요한 부분 중 하나이다. 전통적인 단어 기반 접근 방법인 TF-IDF 벡터 유사도는 문서 간의 의미적인 유사도를 반영하지 못하고, 기존 딥러닝 기반 접근 방법인 시퀀스 유사도 측정 모델은 문서 단위에서 나타나는 긴 문맥을 반영하지 못하는 문제점을 가지고 있다. 이 논문에서 우리는 뉴스 클러스터링에 적합한 문서 쌍 유사도 모델을 구성하기 위하여 문서 쌍에서 생성되는 다수의 문장 표현들 간의 유사도 정보를 종합하여 전체 문서 쌍의 유사도를 측정하는 네 가지 유사도 모델을 제안하였다. 이 접근 방법들은 하나의 벡터로 전체 문서 표현을 압축하는 HAN (hierarchical attention network)와 같은 접근 방법에 비해 두 문서에서 나타나는 문장들 간의 직접적인 유사도를 통해서 전체 문서 쌍의 유사도를 추정한다. 그리고 기존 접근 방법들인 SVM과 HAN과 제안하는 네 가지 유사도 모델을 통해서 두 문서 쌍 간의 유사도 측정 실험을 하였고, 두 가지 접근 방법에서 기존 접근 방법들보다 높은 성능이 나타나는 것을 확인할 수 있었고, 그래프 기반 접근 방법과 유사한 성능을 보이지만 더 효율적으로 문서 유사도를 측정하는 것을 확인하였다.

  • PDF

Clustering-based Statistical Machine Translation Using Syntactic Structure and Word Similarity (문장구조 유사도와 단어 유사도를 이용한 클러스터링 기반의 통계기계번역)

  • Kim, Han-Kyong;Na, Hwi-Dong;Li, Jin-Ji;Lee, Jong-Hyeok
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.4
    • /
    • pp.297-304
    • /
    • 2010
  • Clustering method which based on sentence type or document genre is a technique used to improve translation quality of SMT(statistical machine translation) by domain-specific translation. But there is no previous research using sentence type and document genre information simultaneously. In this paper, we suggest an integrated clustering method that classifying sentence type by syntactic structure similarity and document genre by word similarity information. We interpolated domain-specific models from clusters with general models to improve translation quality of SMT system. Kernel function and cosine measures are applied to calculate structural similarity and word similarity. With these similarities, we used machine learning algorithms similar to K-means to clustering. In Japanese-English patent translation corpus, we got 2.5% point relative improvements of translation quality at optimal case.

Multi-Document Summarization using Time Feature (시간자질을 이용한 다중 문서요약)

  • 임정민;강인수;배재학;이종혁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.898-900
    • /
    • 2004
  • 시간에 중속적인 문서집합에서 사람이 만든 요약문은 시간에 따른 중요 내용의 분포를 보여준다. 본 논문은 다중 문서에 시간 자질을 이용한 문서의 분류와 시간별 문서집합에서 핵심문장과 부가문장을 선별하고, 문장간의 계층적인 클러스터링을 통해서 중요 문장을 선별하는 방법을 제안한다. 동일한 주제를 갖는 문서집합에서 사랑이 선택한 중요 문장에 대해서 제안한 방법은 50% 정확률을 나타냈다.

  • PDF

Automatic Text Summarization with Two Step Sentence Extraction (2단계 문장 추출방법을 이용한 자동 문서 요약)

  • 정운철;고영중;서정연
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.910-912
    • /
    • 2004
  • 자동 문서 요약 시스템은 문서내에 담겨있는 정보를 최대한 표현하면서 문서의 크기를 줄이는 시스템이다. 본 논문에서는 문서 요약을 크게 2단계로 나누어서 수행한다. 문장내 요약본으로써의 불필요한 문장을 미리 제거하고 이에 더해 다양한 통계적 방법의 여러 장점들을 수용함으로써 보다 나은 성능 향상을 얻을 수 있었다. 비교시스템으로는 제목, 위치, 빈도, 도합유사도, 어휘 클러스터링을 이용한 시스템을 구축하여 사용하였으며 30%, 10% 문장요약에서 제안한 시스템은 모두 우수한 성능을 보였다.

  • PDF

Multi Sentence Summarization Method using Similarity Clustering of Word Embedding (워드 임베딩의 유사도 클러스터링을 통한 다중 문장 요약 생성 기법)

  • Lee, Pil-Won;Song, Jin-su;Shin, Yong-Tae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.290-292
    • /
    • 2021
  • 최근 인코더-디코더 구조의 자연어 처리모델이 활발하게 연구가 이루어지고 있다. 인코더-디코더기반의 언어모델은 특히 본문의 내용을 새로운 문장으로 요약하는 추상(Abstractive) 요약 분야에서 널리 사용된다. 그러나 기존의 언어모델은 단일 문서 및 문장을 전제로 설계되었기 때문에 기존의 언어모델에 다중 문장을 요약을 적용하기 어렵고 주제가 다양한 여러 문장을 요약하면 요약의 성능이 떨어지는 문제가 있다. 따라서 본 논문에서는 다중 문장으로 대표적이고 상품 리뷰를 워드 임베딩의 유사도를 기준으로 클러스터를 구성하여 관련성이 높은 문장 별로 인공 신경망 기반 언어모델을 통해 요약을 수행한다. 제안하는 모델의 성능을 평가하기 위해 전체 문장과 요약 문장의 유사도를 측정하여 요약문이 원문의 정보를 얼마나 포함하는지 실험한다. 실험 결과 기존의 RNN 기반의 요약 모델보다 뛰어난 성능의 요약을 수행했다.