• Title/Summary/Keyword: 문장 구조

Search Result 612, Processing Time 0.045 seconds

Embedded clause extraction and restoration for the performance enhancement in Korean-Vietnamese statistical machine translation (한베 통계기계번역의 성능 향상을 위한 내포문 추출 및 복원 기법)

  • Cho, Seung-Woo;Kim, Young-Gil;Kwon, Hong-Seok;Lee, Eui-Hyun;Lee, Won-Ki;Cho, Hyung-Mi;Lee, Jong-Hyeok
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.280-284
    • /
    • 2016
  • 본 논문에서는 기호로 둘러싸인 내포문이 포함된 문장의 번역 성능을 높이는 방법을 제안한다. 입력 문장에서 내포문을 추출하여 여러 문장으로 나타내고, 각각의 문장들을 번역한다. 그리고 번역된 문장들을 복원정보를 활용하여 최종 번역 문장을 생성한다. 이러한 방법론은 입력 문장의 길이를 줄여주며, 그로 인하여 문장 구조가 단순해져 번역 품질이 향상된다. 본 논문에서는 한국어-베트남어 통계 기반 번역기에 대하여 제안한 방법론을 적용하고 실험하였다. 그 결과 BLEU 점수가 약 1.5 향상된 것을 확인할 수 있었다.

  • PDF

Syntactic Analysis of Korean Sentence for Machine Translation (한국어의 Machine translation을 위한 구문 구조 분석)

  • Lee, Ju-Geun;Han, Seong-Guk;Jeon, Byeong-Dae
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.18 no.5
    • /
    • pp.15-21
    • /
    • 1981
  • This paper deals with the syntactic analysis algorithms of Korean sentence and system for machine translation. The parts of speech and constituients are syntactically analized at unified view-points and then an effective classification algorithm is proposed. The constituients which are applied an inverse movement transformation algorithm are processed with the concept of attribute. Syntactic analysis system is constructed to generate parsing table including the deep structure of sentence by lexicon proper to the combinational property of Korean and breadth-first searching method. The results obtained from the system program are shown as the parsing table of source sentences.

  • PDF

The Continuous Speech Recognition with Limited word (제한된 단어를 갖는 우리말 연속 음성 인식)

  • 김석동
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06c
    • /
    • pp.87-90
    • /
    • 1998
  • 이 논문에서 우리는 대규모 어휘를 갖는 연속 음성 인식을 위한 방법을 제시한다. 우리말은 영어와 구조적으로 달라서 대용량 어휘를 갖는 연속 음성을 인식하기 위한 언어모델을 만들기가 매우 어렵다. 언어 모델을 우리말 문장에 적용하기 위해 신문의 사설을 3-gram을 이용하여 처리하였다. 우리의 인식 시스템을 평가하기 위하여 시스템 공학 연구소에서 제공한 낭독 음성을 대상으로 인식률을 계산하였다. 589개의 문장을 대상으로 총 20명이 발음한 3,156개의 문장에 대하여 남자 92.2%, 여자 87.9%의 인식률을 얻었다. 발음사전은 낭독음성과 신문 사설에서 추출한 10K 크기이며 uniphone의 음성모델을 사용하였다.

  • PDF

Assisting semantic parsing-based QA system with lexico-semantic pattern query template (Semantic parsing 기반 지식 베이스 질의응답 시스템의 어휘-의미 패턴 질의 템플릿을 통한 보완)

  • Shim, Hyosup;Park, Seonyeong;Lee, Gary Geunbae
    • Annual Conference on Human and Language Technology
    • /
    • 2014.10a
    • /
    • pp.255-258
    • /
    • 2014
  • 본 논문에서는 semantic parsing과 사전 정의된 어휘-의미 패턴 질의 템플릿 방법론을 결합하여 자연어 질의로부터 RDF 지식베이스에 질의하기 위한 SPARQL 쿼리를 생성하는 방법을 제안한다. semantic parsing 접근법은 문장의 표현과 분리된 형식적 의미표현만을 포착해내므로, paraphrase 혹은 의미 변화와 무관한 어순의 변화에 강인하지만, 일부 자연어 질의문장에는 단순한 의미 및 구조를 갖는 문장도 적합한 형식적 의미표현을 생성하지 못하는 단점이 있다. 따라서 이 연구에서는 이러한 단순한 문장에 있어서는 사전 정의된 질의 템플릿을 사용하여 적합한 쿼리를 생성하되, 적합한 템플릿을 선택하는데 있어 해당 질의문장의 어휘-의미적 유형을 포착하고 해당 정보를 이용하는 방법을 이용하였으며 이를 통해 주 방법론의 약점을 보완하는 제한적인 효과를 얻을 수 있었다.

  • PDF

Effect of Java Statement Types on Program Execution Time (자바 문장 형식이 프로그램 실행시간에 미치는 영향)

  • Yang, Hee-Jae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.11a
    • /
    • pp.1467-1470
    • /
    • 2005
  • 다른 고수준 언어와 마찬가지로 자바도 할당문, 연산문, 조건문, 반복문, 호출문 등의 문장 형식을 갖는다. 자바의 모든 문장 형식은 바이트코드로 변환되어 자바가상기계 상에서 실행된다. 스택 기반 구조를 갖는 자바가상기계에서 각 문장의 실행은 필연적으로 자료 이동을 요구하며, 자료 이동은 메모리 접근을 필요로 하므로 프로그램 실행 시간에 직접적 영향을 미친다. 본 논문에서는 각각의 자바 문장 형식이 어느 정도의 메모리 접근을 요구하며, 프로그램 실행 시간에는 어떤 영향을 미치는지를 분석하였다. 이 연구의 결과는 자바 프로그래머에게 프로그램 실행 시간면에서 보다 효율적인 프로그램 작성을 할 수 있도록 도와 줄 것이다.

  • PDF

Setences Extraction System using Automatic Division of Paragraph (단락 자동 구분을 통한 중요 문자 추출)

  • 김계성;이현주;정영규;서연경;손기준;이상조
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2000.06a
    • /
    • pp.233-237
    • /
    • 2000
  • 본 논문은 단락의 자동 구분을 통한 중요 문장 추출 시스템을 제안한다. 먼저 어휘의 재출현 여부와 어휘의 일치도, 어휘의 역할 변화를 파악하여 재출현 어휘에 대한 양상을 분석하고 이를 통하여 문장 간의 긴밀도를 정량적으로 계산한다. 다음으로 측정된 문장 간 긴밀도를 이용하여 사용자의 추출 범위에 따라 단락을 구분하고, 각 단락의 대표 문장을 선정하여 최종 요약문을 생성한다. 제안한 방법은 문서 제목, 문장의 위치, 수사 구조 등의 정보를 이용하지 않으며, 단순히 어휘의 출현 빈도만을 이용하던 기존의 통계적인 방법보다 질높은 요약문을 생성할 수 있다. 또한 제안한 방법론은 본 논문이 대상으로 삼고 있는 신문기사의 영역뿐만 아니라 다른 영역으로의 적용이 가능하다.

  • PDF

Document Summarization Using Latent Topics (잠재 토픽을 이용한 문서 요약문 추출)

  • Jeong, Young-Seob;Choi, Ho-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.240-243
    • /
    • 2011
  • 웹 문서를 비롯한 여러 가지 문서의 양이 급증함에 따라, 문서로부터 주요정보를 얻거나 자동으로 요약하는 연구들이 진행되어왔다. 특히, 문서를 요약하는 연구들은 문서에 존재하는 문장을 추출하는 방법과 요약문을 새롭게 생성하는 방법, 이렇게 크게 두 가지 방법으로 진행되었다. 이 연구에서는, 잠재 토픽 모델을 통하여 얻어낸 각 문장의 토픽 순열을 이용하여 문서를 대표하는 문장, 즉 요약문으로서 적합한 문장들을 추출하는 새로운 기법을 소개한다. 특히, 잠재 토픽 모델이 일반적으로 가지고 있는 속성인 토픽 순열의 교환성(exchangeability)을 배제하고 토픽의 순열을 이용하여 요약문을 추출해내므로 이 기법을 통하여 문서 혹은 문장의 구조를 반영한 요약문을 만들 수 있다.

English-Korean Machine Translation based-on Bilingual Relation of Idiomatic Expressions (관용적 표현의 대응 관계에 기반한 영어-한국어 기계 번역)

  • Yoon, Sung-Hee;Kim, Yung-Taek
    • Annual Conference on Human and Language Technology
    • /
    • 1993.10a
    • /
    • pp.571-580
    • /
    • 1993
  • 영어 문장을 한국어 문장으로 기계 번역하는 과정에는 분석 규칙이나 변환 규칙만으로는 해결하기 어려운 표현의 대응 관계들이 많이 나타난다. 본 논문은 영어-한국어 기계 번역에서 질적으로 향상된 한국어 문장을 얻기 위하여 두 언어 표현들 사이의 관용적 대응 관계에 기반하는 번역 방식을 논한다. 두 언어 표현들 사이의 다양한 직접 대응 관계를 제공하는 번역 사전을 이용하며, 입력 영어 문장으로부터 이와 같은 표현들을 인식하고 한국어 표현으로 직접적으로 대응시키는 번역 방식이다. 이러한 번역 방식은 기존의 변환 규칙 기반의 번역 방식보다 자연스러운 한국어 문장을 생성할 뿐만 아니라, 많은 구조적-의미적 모호성을 해결함으로써 시간적-공간적 처리효율을 크게 높일 수 있다.

  • PDF

Predicting Contextually Appropriate Intonation from Utterances in Korean with Combinatory Categorial Grammar (결합범주문법을 이용한 한국어 문장의 자연스러운 억양 생성에 대한 연구)

  • Lee, Hwa-Jin;Park, Jong-C.
    • Annual Conference on Human and Language Technology
    • /
    • 2000.10d
    • /
    • pp.68-75
    • /
    • 2000
  • 상대방에게 의사를 전달할 때 보다 정확하게 자신의 의도를 표현하려면 대화의 흐름에 맞는 적절한 억양을 주어 발화해야 한다. 본 논문에서는 결합범주문법을 이용하여 문장을 분석하고 문장 내 정보와 문장 간 정보 즉, 문맥에 따라 강세(pitch accent), 휴지(pause), 강조 등의 억양정보를 어떻게 나타내야 하는지를 분석하여 문장의 정보구조에 추가하는 방법을 제시한다.

  • PDF

A Study on the OCR of Korean Sentence Using DeepLearning (딥러닝을 활용한 한글문장 OCR연구)

  • Park, Sun-Woo
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.470-474
    • /
    • 2019
  • 한글 OCR 성능을 높이기 위해 딥러닝 모델을 활용하여 문자인식 부분을 개선하고자 하였다. 본 논문에서는 폰트와 사전데이터를 사용해 딥러닝 모델 학습을 위한 한글 문장 이미지 데이터를 직접 생성해보고 이를 활용해서 한글 문장의 OCR 성능을 높일 다양한 모델 조합들에 대한 실험을 진행했다. 딥러닝 모델은 STR(Scene Text Recognition) 구조를 사용해 변환, 추출, 시퀀스, 예측 모듈 각 24가지 모델 조합을 구성했다. 딥러닝 모델을 활용한 OCR 실험 결과 한글 문장에 적합한 모델조합은 변환 모듈을 사용하고 시퀀스와 예측 모듈에는 BiLSTM과 어텐션을 사용한 모델조합이 다른 모델 조합에 비해 높은 성능을 보였다. 해당 논문에서는 이전 한글 OCR 연구와 비교해 적용 범위를 글자 단위에서 문장 단위로 확장하였고 실제 문서 이미지에서 자주 발견되는 유형의 데이터를 사용해 애플리케이션 적용 가능성을 높이고자 한 부분에 의의가 있다.

  • PDF