• Title/Summary/Keyword: 문장형태 정보

Search Result 270, Processing Time 0.023 seconds

A Question Example Generation System for Multiple Choice Tests by utilizing Concept Similarity in Korean WordNet (한국어 워드넷에서의 개념 유사도를 활용한 선택형 문항 생성 시스템)

  • Kim, Young-Bum;Kim, Yu-Seop
    • The KIPS Transactions:PartA
    • /
    • v.15A no.2
    • /
    • pp.125-134
    • /
    • 2008
  • We implemented a system being able to suggest example sentences for multiple choice tests, considering the level of students. To build the system, we designed an automatic method for sentence generation, which made it possible to control the difficulty degree of questions. For the proper evaluation in the multiple choice tests, proper size of question pools is required. To satisfy this requirement, a system which can generate various and numerous questions and their example sentences in a fast way should be used. In this paper, we designed an automatic generation method using a linguistic resource called WordNet. For the automatic generation, firstly, we extracted keywords from the existing sentences with the morphological analysis and candidate terms with similar meaning to the keywords in Korean WordNet space are suggested. When suggesting candidate terms, we transformed the existing Korean WordNet scheme into a new scheme to construct the concept similarity matrix. The similarity degree between concepts can be ranged from 0, representing synonyms relationships, to 9, representing non-connected relationships. By using the degree, we can control the difficulty degree of newly generated questions. We used two methods for evaluating semantic similarity between two concepts. The first one is considering only the distance between two concepts and the second one additionally considers positions of two concepts in the Korean Wordnet space. With these methods, we can build a system which can help the instructors generate new questions and their example sentences with various contents and difficulty degree from existing sentences more easily.

Quality Improvement Method on Grammatical Errors of Information System Audit Report (정보시스템 감리보고서의 문법적 오류에 대한 품질 향상 방안)

  • Lee, Don Hee;Lee, Gwan Hyung;Moon, Jin Yong;Kim, Jeong Joon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.211-219
    • /
    • 2019
  • Accomplishing information system, techniques, methodology have been studied continuously and give much help to auditors who are using them. Additionally audit report which is the conclusion of accomplishing ISA(information system audit), has law of a basis and phase with ITA/EA Law(Electronic Government Law). This paper is for better quality of ISA report. But it has more errors about sentence and Grammatical structures. In this paper, to achieve quality improvement objectives, it is necessary to recognize the importance of an audit report by investigating on objectives, functionality, structures and usability of a report firstly, and a legal basis, the presence of report next. Several types of audit reports were chosen and the reports errors were divided into several categories and analyzed. After grasping reasons of those errors, the methods for fixing those errors and check-lists model was provided. And based on that foundation, the effectiveness validation about real audit reports was performed. The necessity for efforts to improve the quality of audit reports was emphasized and further research subject(AI Automatic tool) of this paper conclusion. We also expect this paper to be useful for the organization to improve on ISA in the future.

Design and Implementation of a Sign Language Gesture Recognizer using Data Glove and Motion Tracking System (장갑 장치와 제스처 추적을 이용한 수화 제스처 인식기의 실계 및 구현)

  • Kim, Jung-Hyun;Roh, Yong-Wan;Kim, Dong-Gyu;Hong, Kwang-Seok
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2005.11a
    • /
    • pp.233-237
    • /
    • 2005
  • 수화의 인식 및 표현 기술에 대한 관련 연구는 수화 인식을 통한 건청인과의 의사 전달, 가상현실에서의 손동작 인식 등을 대상으로 여러 방면으로의 접근 및 연구 결과를 도출하고 있다. 그러나 이들 연구의 대부분 데스크탑 PC기반의 수신호(Hand signal) 제어 및 수화 - 손 동작 인식에 목적을 두었고 수화 신호의 획득을 위하여 영상장비를 이용하였으며 이를 바탕으로 단어 위주의 수화 인식 및 표현에 중점을 둔 수화 인식 시스템의 구현을 통해 비장애인과의 자유로운 의사소통을 추구하고 있다. 따라서 본 논문에서는 햅틱 장치로부터 사용자의 의미있는 수화 제스처를 획득하기 위한 접근 방식을 차세대 착용형 PC 플랫폼 기반의 유비쿼터스 환경으로 확대, 적용시켜 제스처 데이터 입력 모듈로부터 새로운 정보의 획득에 있어 한계성을 극복하고 사용자의 편의를 도모할 수 있는 효율적인 데이터 획득 방안을 제시한다. 또한 퍼지 알고리즘 및 RDBMS 모듈을 이용하여 언제, 어디에서나 사용자의 의미 있는 문장형 수화 제스처를 실시간으로 인식하고 표현하는 수화 제스처 인식기를 구현하였다. 본 논문에서는 수화 제스처 입력 모듈(5th Data Glove System과 $Fastrak{\circledR}$)과 차세대 착용형 PC 플랫폼(embedded I.MX21 board)간의 이격거리를 반경 10M의 타원 형태로 구성하고 규정된 위치로 수화 제스처 데이터 입력모듈을 이동시키면서 5인의 피실험자에 대하여 연속적으로 20회의 반복 실험을 수행하였으며 사용자의 동적 제스처 인식 실험결과 92.2% 평균 인식률을 도출하였다.

  • PDF

Pattern and Instance Generation for Self-knowledge Learning in Korean (한국어 자가 지식 학습을 위한 패턴 및 인스턴스 생성)

  • Yoon, Hee-Geun;Park, Seong-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.1
    • /
    • pp.63-69
    • /
    • 2015
  • There are various researches which proposed an automatic instance generation from freetext on the web. Existing researches that focused on English, adopts pattern representation which is generated by simple rules and regular expression. These simple patterns achieves high performance, but it is not suitable in Korean due to differences of characteristics between Korean and English. Thus, this paper proposes a novel method for generating patterns and instances which focuses on Korean. A proposed method generates high quality patterns by taking advantages of dependency relations in a target sentences. In addition, a proposed method overcome restrictions from high degree of freedom of word order in Korean by utilizing postposition and it identifies a subject and an object more reliably. In experiment results, a proposed method shows higher precision than baseline and it is implies that proposed approache is suitable for self-knowledge learning system.

Examination of a Voice Interaction Model for Smart TV through Conversation Patterns (대화 패턴 연구를 통한 스마트TV 음성 상호작용 모델의 탐구)

  • Choi, Jinhae
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.2
    • /
    • pp.96-104
    • /
    • 2017
  • As new smart devices are evolved into the intelligent agent who can reflect user intention and use context, user experience design for easy and convenient usability becomes a core competitive edge. Under the assumption that human centered natural interaction is necessary for the optimal smart TV experience, this study explores the types of voice interaction which are peculiar to TV watching context. In order to build a model for the users to naturally interact with Smart TV, conversation patterns were collected by requesting key features of Smart TV to intelligent agent. Collected sentences were applied to CfA model and classified by responses to activate features. The classified conversation patterns were divided into feature activation and information search. This study has identified that CfC1 occurred when voice interaction between Smart TV and users was vague and CfC2 occurred when the requests were complex or conditional. In conclusion, Simple Request Type is the most efficient model and voice interaction is more appropriate to use to clarify users' vague requests.

Development of a Korean Sign Language Message Board in Workplace for Deaf People (청각장애인을 위한 작업 현장용 한국 수화 메시지 보드의 개발)

  • Jang, Hyo-Young;Oh, Young-Joon;Jung, Sung-Hoon;Park, Kwang-Hyun;Bien, Zeung-Nam
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.393-398
    • /
    • 2007
  • 본 논문은 작업 현장에서 청각장애인의 의사소통을 보조하는 한국 수화 메시지 보드의 개발에 대하여 다룬다. 청각 장애인은 일상적인 직업 현장에서 의사소통이 자유롭지 못하여 업무에 잘 적응하지 못하고 사내의 인간관계에 많은 어려움을 겪고 있다. 문자를 이용한 정보 전달을 통해 모든 의사소통을 대체할 수 있을 것이라는 일반적인 생각과는 달리, 청각장애인의 경우 비장애인과 비교하여 사물의 개념 습득에 어려움이 있을 수 있으며 마찬가지로 사용하는 어휘수도 제한적인 경우가 많아 문자를 통한 의사소통에는 명확한 한계가 존재한다. 실제로 청각 장애 근로자가 이직하는 사유로 의사소통이나 인간관계가 높은 비중을 차지한다. 수화 메시지 보드는 크게 사내 네트워크를 이용한 공지 사항 전달을 위한 용도와 복수 개의 메시지 보드 간 문자 송수신의 용도로 사용 가능하다. 비장애인이 청각장애인에게 문자 입력으로 의사를 전달하면, 전달된 문자는 문자-수화 번역기를 통해 자동으로 수화로 번역되어 아바타의 수화 동작으로 화면에 출력된다. 전체 시스템은 수화 아바타를 포함한 그래픽 유저 인터페이스 (GUI), 수화 데이터베이스 및 한글 형태소/문장 분석기를 포함하는 문자-수화 번역기, 그리고 TCP/IP 기반의 문자 전송기의 세 부분으로 나뉜다. 본 논문에서는 수화 데이터베이스의 단어 선정을 위한 대상 작업 현장을 청각 장애 근로자가 타 직업에 비해 많은 비중을 차지하는 전자 부품 조립 업체로 한정하였다. 수화 데이터베이스는 자음 14종, 모음 17종, 숫자 15종, 일상생활 용어 1000종, 전자 부품 조립 업체에 특화된 단어 50종 및 직업 교육 관련 용어 50종으로 이루어진 총 1146종의 수화 단어를 포함하며, 수화 데이터베이스에 등록되지 않은 단어에 대해서는 지화로 표현하도록 한다. 이 중 전자 부품 조립 업체 특화 단어와 관련하여서는, 현재 동일한 분야의 작업 현장이라 하더라도 각 사업장 간 사용되는 수화가 통일되지 않아 문헌 조사 및 현장 조사를 통해 사용 빈도가 높고 형태가 공통적인 50종을 추려내었다. 본 연구는 실제 업무현장에서 청각장애인이 겪는 의사소통의 문제를 효과적으로 해결함으로써, 청각장애인이 직업 현장에 보다 쉽게 적응하도록 도움을 줄 뿐만 아니라, 일을 통해 자아 실현을 하도록 돕는 방안이 될 수 있다는 점에서 중요한 의의를 갖는다.

  • PDF

Discovering News Keyword Associations Using Association Rule Mining (연관규칙 마이닝을 활용한 뉴스기사 키워드의 연관성 탐사)

  • Kim, Han-Joon;Chang, Jae-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.6
    • /
    • pp.63-71
    • /
    • 2011
  • The current Web portal sites provide significant keywords with high popularity or importance; specifically, user-friendly services such as tag clouds and associated word search are provided. However, in general, since news articles are classified only with their date and categories, it is not easy for users to find other articles related to some articles while reading news articles classified with categories. And the conventional associated keyword service has not satisfied users sufficiently because it depends only upon user queries. This paper proposes a way of searching news articles by utilizing the keywords tightly associated with users' queries. Basically, the proposed method discovers a set of keyword association patterns by using the association rule mining technique that extracts association patterns for keywords by focusing upon sentences containing some keywords. The method enables users to navigate the space of associated keywords hidden in large news articles.

Performance Enhancement of Tree Kernel-based Protein-Protein Interaction Extraction by Parse Tree Pruning and Decay Factor Adjustment (구문 트리 가지치기 및 소멸 인자 조정을 통한 트리 커널 기반 단백질 간 상호작용 추출 성능 향상)

  • Choi, Sung-Pil;Choi, Yun-Soo;Jeong, Chang-Hoo;Myaeng, Sung-Hyon
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.2
    • /
    • pp.85-94
    • /
    • 2010
  • This paper introduces a novel way to leverage convolution parse tree kernel to extract the interaction information between two proteins in a sentence without multiple features, clues and complicated kernels. Our approach needs only the parse tree alone of a candidate sentence including pairs of protein names which is potential to have interaction information. The main contribution of this paper is two folds. First, we show that for the PPI, it is imperative to execute parse tree pruning removing unnecessary context information in deciding whether the current sentence imposes interaction information between proteins by comparing with the latest existing approaches' performance. Secondly, this paper presents that tree kernel decay factor can play an pivotal role in improving the extraction performance with the identical learning conditions. Consequently, we could witness that it is not always the case that multiple kernels with multiple parsers perform better than each kernels alone for PPI extraction, which has been argued in the previous research by presenting our out-performed experimental results compared to the two existing methods by 19.8% and 14% respectively.

Semantic Dependency Link Topic Model for Biomedical Acronym Disambiguation (의미적 의존 링크 토픽 모델을 이용한 생물학 약어 중의성 해소)

  • Kim, Seonho;Yoon, Juntae;Seo, Jungyun
    • Journal of KIISE
    • /
    • v.41 no.9
    • /
    • pp.652-665
    • /
    • 2014
  • Many important terminologies in biomedical text are expressed as abbreviations or acronyms. We newly suggest a semantic link topic model based on the concepts of topic and dependency link to disambiguate biomedical abbreviations and cluster long form variants of abbreviations which refer to the same senses. This model is a generative model inspired by the latent Dirichlet allocation (LDA) topic model, in which each document is viewed as a mixture of topics, with each topic characterized by a distribution over words. Thus, words of a document are generated from a hidden topic structure of a document and the topic structure is inferred from observable word sequences of document collections. In this study, we allow two distinct word generation to incorporate semantic dependencies between words, particularly between expansions (long forms) of abbreviations and their sentential co-occurring words. Besides topic information, the semantic dependency between words is defined as a link and a new random parameter for the link presence is assigned to each word. As a result, the most probable expansions with respect to abbreviations of a given abstract are decided by word-topic distribution, document-topic distribution, and word-link distribution estimated from document collection though the semantic dependency link topic model. The abstracts retrieved from the MEDLINE Entrez interface by the query relating 22 abbreviations and their 186 expansions were used as a data set. The link topic model correctly predicted expansions of abbreviations with the accuracy of 98.30%.

Multi-Dimensional Keyword Search and Analysis of Hotel Review Data Using Multi-Dimensional Text Cubes (다차원 텍스트 큐브를 이용한 호텔 리뷰 데이터의 다차원 키워드 검색 및 분석)

  • Kim, Namsoo;Lee, Suan;Jo, Sunhwa;Kim, Jinho
    • Journal of Information Technology and Architecture
    • /
    • v.11 no.1
    • /
    • pp.63-73
    • /
    • 2014
  • As the advance of WWW, unstructured data including texts are taking users' interests more and more. These unstructured data created by WWW users represent users' subjective opinions thus we can get very useful information such as users' personal tastes or perspectives from them if we analyze appropriately. In this paper, we provide various analysis efficiently for unstructured text documents by taking advantage of OLAP (On-Line Analytical Processing) multidimensional cube technology. OLAP cubes have been widely used for the multidimensional analysis for structured data such as simple alphabetic and numberic data but they didn't have used for unstructured data consisting of long texts. In order to provide multidimensional analysis for unstructured text data, however, Text Cube model has been proposed precently. It incorporates term frequency and inverted index as measurements to search and analyze text databases which play key roles in information retrieval. The primary goal of this paper is to apply this text cube model to a real data set from in an Internet site sharing hotel information and to provide multidimensional analysis for users' reviews on hotels written in texts. To achieve this goal, we first build text cubes for the hotel review data. By using the text cubes, we design and implement the system which provides multidimensional keyword search features to search and to analyze review texts on various dimensions. This system will be able to help users to get valuable guest-subjective summary information easily. Furthermore, this paper evaluats the proposed systems through various experiments and it reveals the effectiveness of the system.