• Title/Summary/Keyword: 문장형태 정보

Search Result 270, Processing Time 0.024 seconds

Head-based Pharse Structure Transfer Dictionary for Korean_English Machine Translation (한.영 기계번역을 위한 중심어 기반 구 구조 변환 사전)

  • Lee, San-Jo;Park, Sang-Kyu;Kim, Yung-Taek
    • Annual Conference on Human and Language Technology
    • /
    • 1994.11a
    • /
    • pp.157-162
    • /
    • 1994
  • 한국어로부터 자연스러운 영어 역어문장을 생성하기 위한 정보를 사전에 일관성있게 수록하는 방법을 제시하였다. 기계번역의 각 과정에서 필요한 정보는 가장 적당한 형태로 사전으로부터 제공되어야 하는 것이 일반적인 방법이다. 그러나 한국어는 어순의 부분적 자유성, 어미의 복잡한 활용규칙, 조사의 다양한 쓰임새로 인해 이러한 규칙들의 정보를 일관되게 사전에 수록하기가 어려운 실정이다. 본 논문에서는 한국어 문장과 역어 문장을 단어나 구 혹은 절등의 구성요소들의 다대다 매핑규칙을 찾고 이들 규칙을 적당한 형태로 사전에 수록하여야하는 어려움에서 벗어나 문장대 문장구조를 직접대응시켜 구구조단위로 분석된 형태의 부분 파서트리 형태의 트리구조를 역어와 함께 사전에 수록하므로써 사전정보를 손쉽게 구축, 유지하고자 하였다. 또 이들 정보를 추출해내는 알고리즘을 사용함으로써 주어진 한국어 문장에 대해 사전에 수록된 가장 자연스러운 형태의 역어문장을 생성할 수 있도록 하였다.

  • PDF

A Conditional Unification Based Parsing for Korean Using Sentence-Type Information (문장 형태 정보를 이용한 조건단일화 기반 한국어 파싱)

  • Yang Seungweon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.9 no.4
    • /
    • pp.1-7
    • /
    • 2004
  • In this thesis, we introduce a parsing method which use information of the post position in Korean to get the exact parsing tree. In order to implement this method we classified categories of the predicates, and defined sentence-types based on these categories. We tried to make parsing using the method grasping the grammatical role of the noun phrase that have to exist in each sentence-type. In parser control mechanism, we use some heuristics based on linguistic frame. We use conditional unification to implement analysis. It is Possible to reduce ambiguous because the parsing method suggested helps to Prune the branches which are unnecessary.

  • PDF

Template Constrained Sequence to Sequence based Conversational Utterance Error Correction Method (문장틀 기반 Sequence to Sequence 구어체 문장 문법 교정기)

  • Jeesu Jung;Seyoun Won;Hyein Seo;Sangkeun Jung;Du-Seong Chang
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.553-558
    • /
    • 2022
  • 최근, 구어체 데이터에 대한 자연어처리 응용 기술이 늘어나고 있다. 구어체 문장은 소통 방식 등의 형태로 인해 정제되지 않은 형태로써, 필연적으로 띄어쓰기, 문장 왜곡 등의 다양한 문법적 오류를 포함한다. 자동 문법 교정기는 이러한 구어체 데이터의 전처리 및 일차적 정제 도구로써 활용된다. 사전학습된 트랜스포머 기반 문장 생성 연구가 활발해지며, 이를 활용한 자동 문법 교정기 역시 연구되고 있다. 트랜스포머 기반 문장 교정 시, 교정의 필요 유무를 잘못 판단하여, 오류가 생기게 된다. 이러한 오류는 대체로 문맥에 혼동을 주는 단어의 등장으로 인해 발생한다. 본 논문은 트랜스포머 기반 문법 교정기의 오류를 보강하기 위한 방식으로써, 필요하지 않은 형태소인 고유명사를 마스킹한 입력 및 출력 문장틀 형태를 제안하며, 이러한 문장틀에 대해 고유명사를 복원한 경우 성능이 증강됨을 보인다.

  • PDF

A Document Generation System Based on an Ontology (온톨로지 기반의 문서 생성 시스템)

  • Ryu, Jae-Hyun;Park, Seong-Bae
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.313-316
    • /
    • 2016
  • 온톨로지란 사물이나 개념의 속성이나 관계를 사람과 컴퓨터 모두 이해할 수 있는 형태로 표현한 모델로 정보검색, 인공지능, 소프트웨어 공학 등의 분야에서 많이 활용된다. 온톨로지에는 다양한 정보가 구조화되어 저장되어 있지만 일반적으로 온톨로지가 제공하는 그래프 형태의 데이터들은 사용자들이 직관적으로 이해하기가 힘들다. 따라서 본 논문에서는 온톨로지의 정보를 문장화하여 한국어 문서를 생성하는 시스템을 제안한다. 제안하는 시스템은 주제와 관련된 트리플을 추출하고 이를 문장정렬, 결합, 생성을 위한 정보가 담긴 템플릿을 생성한 뒤 한국어 문법에 맞게 문장을 생성한다. 또한 기존 연구에서 다루지 않았던 이벤트 온톨로지의 내용을 포함하여 문장을 생성한다. 두 온톨로지로부터 생성된 문장을 연결하여 주제어를 설명하는 하나의 문서를 작성한다.

  • PDF

A Document Generation System Based on an Ontology (온톨로지 기반의 문서 생성 시스템)

  • Ryu, Jae-Hyun;Park, Seong-Bae
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.313-316
    • /
    • 2016
  • 온톨로지란 사물이나 개념의 속성이나 관계를 사람과 컴퓨터 모두 이해할 수 있는 형태로 표현한 모델로 정보검색, 인공지능, 소프트웨어 공학 등의 분야에서 많이 활용된다. 온톨로지에는 다양한 정보가 구조화되어 저장되어 있지만 일반적으로 온톨로지가 제공하는 그래프 형태의 데이터들은 사용자들이 직관적으로 이해하기가 힘들다. 따라서 본 논문에서는 온톨로지의 정보를 문장화하여 한국어 문서를 생성하는 시스템을 제안한다. 제안하는 시스템은 주제와 관련된 트리플을 추출하고 이를 문장정렬, 결합, 생성을 위한 정보가 담긴 템플릿을 생성한 뒤 한국어 문법에 맞게 문장을 생성한다. 또한 기존 연구에서 다루지 않았던 이벤트 온톨로지의 내용을 포함하여 문장을 생성한다. 두 온톨로지로부터 생성된 문장을 연결하여 주제어를 설명하는 하나의 문서를 작성한다.

  • PDF

Self-supervised Learning Method using Heterogeneous Mass Corpus for Sentence Embedding Model (이종의 말뭉치를 활용한 자기 지도 문장 임베딩 학습 방법)

  • Kim, Sung-Ju;Suh, Soo-Bin;Park, Jin-Seong;Park, Sung-Hyun;Jeon, Dong-Hyeon;Kim, Seon-Hoon;Kim, Kyung-Duk;Kang, In-Ho
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.32-36
    • /
    • 2020
  • 문장의 의미를 잘 임베딩하는 문장 인코더를 만들기 위해 비지도 학습과 지도 학습 기반의 여러 방법이 연구되고 있다. 지도 학습 방식은 충분한 양의 정답을 구축하는데 어려움이 있다는 한계가 있다. 반면 지금까지의 비지도 학습은 단일 형식의 말뭉치에 한정해서 입력된 현재 문장의 다음 문장을 생성 또는 예측하는 형식으로 문제를 정의하였다. 본 논문에서는 위키피디아, 뉴스, 지식 백과 등 문서 형태의 말뭉치에 더해 지식인이나 검색 클릭 로그와 같은 구성이 다양한 이종의 대량 말뭉치를 활용하는 자기 지도 학습 방법을 제안한다. 각 형태의 말뭉치에 적합한 자기 지도 학습 문제를 설계하고 학습한 경우 KorSTS 데이셋의 비지도 모델 성능 평가에서 기준 모델 대비 7점 가량의 성능 향상이 있었다.

  • PDF

Measuring Sentence Similarity using Morpheme Embedding Model and GRU Encoder for Question and Answering System (질의응답 시스템에서 형태소임베딩 모델과 GRU 인코더를 이용한 문장유사도 측정)

  • Lee, DongKeon;Oh, KyoJoong;Choi, Ho-Jin;Heo, Jeong
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.128-133
    • /
    • 2016
  • 문장유사도 분석은 문서 평가 자동화에 활용될 수 있는 중요한 기술이다. 최근 순환신경망을 이용한 인코더-디코더 언어 모델이 기계학습 분야에서 괄목할만한 성과를 거두고 있다. 본 논문에서는 한국어 형태 소임베딩 모델과 GRU(Gated Recurrent Unit)기반의 인코더를 제시하고, 이를 이용하여 언어모델을 한국어 위키피디아 말뭉치로부터 학습하고, 한국어 질의응답 시스템에서 질문에 대한 정답을 유추 할 수 있는 증거문장을 찾을 수 있도록 문장유사도를 측정하는 방법을 제시한다. 본 논문에 제시된 형태소임베딩 모델과 GRU 기반의 인코딩 모델을 이용하여 문장유사도 측정에 있어서, 기존 글자임베딩 방법에 비해 개선된 결과를 얻을 수 있었으며, 질의응답 시스템에서도 유용하게 활용될 수 있음을 알 수 있었다.

  • PDF

A New N-ary Entities Relation Approach for User Query Mean Desicion (사용자 질의 의미 결정을 위한 새로운 N-ary 개체 관계 디자인 패턴)

  • Su-Kyoung Kim;Kee-Hong Ahn
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.635-638
    • /
    • 2008
  • 본 연구는 웹이나 정보 검색 환경에서 사용자로부터 입력되는 단순한 키워드 형태의 질의가 아닌 문장형태의 질의에 있어 문장이 내포하는 질의의 의미를 결정하여 더 정확한 검색 결과를 제공하기 위해 온톨로지 내 개념들 간의 속성간 연결을 위해 A-Box 기반의 관계 선언과 새로운 N-ary 개체 관계 방법을 제안한다. 특히 개념 개체들 간의 의미를 더 정확히 결정하기 위해 기존의 N-ary 개체 관계 방법이 갖고 있는 속성에 가중치를 포함하는 것이 아니라 가중치에 관련된 새로운 개체를 생성 패턴을 제시하여 특정 개념에 연관된 개념들의 관련성 결정의 성능을 높이도록 하였다. 본 연구의 실험에 있어 사용자가 입력한 병증의 문장을 결정하기 위해, A-Box 기반의 관계 선언과 N-ary 디자인 패턴에 결합하는 지식 도메인 온톨로지 등을 구축하였으며, 이를 통한 실험 결과 문장의 의미에 따른 더 정확한 결과를 보여주었다.

Extraction of the Training Data for Building Case Frames from a Corpus (말뭉치로부터 격틀 구축에 필요한 학습 데이터 추출)

  • Yang, Dan-Hee;Song, Man-Suk
    • Annual Conference on Human and Language Technology
    • /
    • 1998.10c
    • /
    • pp.287-292
    • /
    • 1998
  • 실용적인 격틀(Case frame) 정보를 말뭉치로부터 자동구축하기 위해서는 대량의 홀문장이 필요하다. 그리고 국어 문장 형식은 영어와 많은 차이점이 있다. 또한 기존의 격틀 구축 연구에서 전제했던 광범위한 학습 데이터와 언어학적 지식은 국어에 대해 현재 존재하지 않는다. 그러므로 본 연구는 그러한 문제점들을 밝히고 현실적인 접근 방법을 제시한다. 그리고 겹문장을 홑문장 형태의 문장들로 바꾸기 위한 알고리즘을 제시한다.

  • PDF

The Design and Implementation of an Information Retrieval System Using Lexico-Semantic Pattern and Ontology (어휘 의미 패턴(Lexico-Semantic Pattern)과 온톨로지를 이용한 정보검색기의 설계 및 구현)

  • Kim, Byoung-Woo;Ko, Young-Joong
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.957-962
    • /
    • 2007
  • 본 논문에서 제안하는 정보 검색기는 일반적인 불리언(Boolean) 질의를 통해서 정보를 검색하는 것이 아니라, 문장으로 입력된 질의형태의 패턴을 분석하여 그에 맞는 정보를 직접 제공하는 것에 목적을 둔다. 이를 위해 어휘 의미 패턴(Lexical Semantic Pattern)과 온톨로지(Ontology) 기술이 정보검색기 개발에 적용되었다. 제안된 시스템에서는 다양한 형태로 표현된 문장 질의를 어휘 의미 패턴을 사용해서 문장의 질의 패턴을 추출하고 사용자 질의를 하나의 온톨로지(Ontology) 추론 질의와 매칭함으로써 질의에 대한 정확한 해답을 추출할 수 있다. 또한, 자연어 문장 입력에 대한 검색 질의 생성기를 구축하고 온톨로지로 표현된 지식을 사용하여 정보검색기 질의를 자동으로 확장함으로써 더욱 정확한 정보 검색 결과를 만들어 낼 수 있다.

  • PDF