• Title/Summary/Keyword: 문장임베딩

Search Result 117, Processing Time 0.023 seconds

Korean Syntactic Parsing with XLNet (XLNet을 이용한 한국어 구문분석)

  • Kim, Min-Seok;Shin, Chang-Uk;Oh, Jinyoung;Cha, Jeong-Won
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.540-542
    • /
    • 2019
  • 문맥기반 사전학습 단어 임베딩이 다양한 분야 적용되어 훌륭한 성능을 보여주고 있다. 본 논문에서는 사전학습한 XLNet 모델을 구문분석에 적용하였다. XLNet은 문장에서 생성 가능한 모든 후보에 대해 트랜스 포머를 기반으로 하는 사전학습을 진행한다. 따라서 문장 전체 정보를 필요로 하는 구문분석에 특히 유용하다. 본 논문에서는 한국어 특성을 반영하기 위하여 형태소 분석을 시행한 107.2GB 크기의 대용량 데이터를 사용해 학습을 진행하였다. 본 논문에서 제안한 모델을 세종 구문 코퍼스에 적용한 결과, UAS 91.93% LAS 89.30%의 성능을 보였다.

  • PDF

Korean Dependency Relation Labeling Using Bidirectional LSTM CRFs Based on the Dependency Path and the Dependency Relation Label Distribution of Syllables (의존 경로와 음절단위 의존 관계명 분포 기반의 Bidirectional LSTM CRFs를 이용한 한국어 의존 관계명 레이블링)

  • An, Jaehyun;Lee, Hokyung;Ko, Youngjoong
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.14-19
    • /
    • 2016
  • 본 논문은 문장에서의 어절 간 의존관계가 성립될 때 의존소와 지배소가 어떠한 관계를 가지는지 의존 관계명을 부착하는 모델을 제안한다. 국내에서 한국어 의존구문분석에 관한 연구가 활발히 진행되고 있지만 의존 관계만을 결과로 제시하고 의존 관계명을 제공하지 않는 경우가 많았다. 따라서 본 논문에서는 의존경로(Dependency Path)와 음절의 의존 관계명 분포를 반영하는 음절 임베딩를 이용한 의존 관계명 부착모델을 제안한다. 문장에서 나올 수 있는 최적의 입력 열인 의존 경로(Dependency Path)를 순차 레이블링에서 좋은 성능을 나타내고 있는 bidirectional LSTM-CRFs의 입력 값으로 사용하여 의존 관계명을 결정한다. 제안된 기법은 자질에 대한 많은 노력 없이 의존 경로에 따라 어절 및 음절 단어표상(word embedding)만을 사용하여 순차적으로 의존 관계명을 부착한다. 의존 경로를 사용하지 않고 전체 문장의 어절 순서를 바탕으로 자질을 추출하여 CRFs로 분석한 기존 모델보다 의존 경로를 사용했을 때 4.1%p의 성능향상을 얻었으며, 의존 관계명 분포를 반영하는 음절 임베딩을 사용한 bidirectional LSTM-CRFs는 의존 관계명 부착에 최고의 성능인 96.01%(5.21%p 개선)를 내었다.

  • PDF

Korean Dependency Relation Labeling Using Bidirectional LSTM CRFs Based on the Dependency Path and the Dependency Relation Label Distribution of Syllables (의존 경로와 음절단위 의존 관계명 분포 기반의 Bidirectional LSTM CRFs를 이용한 한국어 의존 관계명 레이블링)

  • An, Jaehyun;Lee, Hokyung;Ko, Youngjoong
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.14-19
    • /
    • 2016
  • 본 논문은 문장에서의 어절 간 의존관계가 성립될 때 의존소와 지배소가 어떠한 관계를 가지는지 의존 관계명을 부착하는 모델을 제안한다. 국내에서 한국어 의존구문분석에 관한 연구가 활발히 진행되고 있지만 의존 관계만을 결과로 제시하고 의존 관계명을 제공하지 않는 경우가 많았다. 따라서 본 논문에서는 의존 경로(Dependency Path)와 음절의 의존 관계명 분포를 반영하는 음절 임베딩를 이용한 의존 관계명 부착 모델을 제안한다. 문장에서 나올 수 있는 최적의 입력 열인 의존 경로(Dependency Path)를 순차 레이블링에서 좋은 성능을 나타내고 있는 bidirectional LSTM-CRFs의 입력 값으로 사용하여 의존 관계명을 결정한다. 제안된 기법은 자질에 대한 많은 노력 없이 의존 경로에 따라 어절 및 음절 단어표상(word embedding)만을 사용하여 순차적으로 의존 관계명을 부착한다. 의존 경로를 사용하지 않고 전체 문장의 어절 순서를 바탕으로 자질을 추출하여 CRFs로 분석한 기존 모델보다 의존 경로를 사용했을 때 4.1%p의 성능향상을 얻었으며, 의존 관계명 분포를 반영하는 음절 임베딩을 사용한 bidirectional LSTM-CRFs는 의존 관계명 부착에 최고의 성능인 96.01%(5.21%p 개선)를 내었다.

  • PDF

A Study on Named Entity Recognition for Effective Dialogue Information Prediction (효율적 대화 정보 예측을 위한 개체명 인식 연구)

  • Go, Myunghyun;Kim, Hakdong;Lim, Heonyeong;Lee, Yurim;Jee, Minkyu;Kim, Wonil
    • Journal of Broadcast Engineering
    • /
    • v.24 no.1
    • /
    • pp.58-66
    • /
    • 2019
  • Recognition of named entity such as proper nouns in conversation sentences is the most fundamental and important field of study for efficient conversational information prediction. The most important part of a task-oriented dialogue system is to recognize what attributes an object in a conversation has. The named entity recognition model carries out recognition of the named entity through the preprocessing, word embedding, and prediction steps for the dialogue sentence. This study aims at using user - defined dictionary in preprocessing stage and finding optimal parameters at word embedding stage for efficient dialogue information prediction. In order to test the designed object name recognition model, we selected the field of daily chemical products and constructed the named entity recognition model that can be applied in the task-oriented dialogue system in the related domain.

Predicate Recognition Method using BiLSTM Model and Morpheme Features (BiLSTM 모델과 형태소 자질을 이용한 서술어 인식 방법)

  • Nam, Chung-Hyeon;Jang, Kyung-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.24-29
    • /
    • 2022
  • Semantic role labeling task used in various natural language processing fields, such as information extraction and question answering systems, is the task of identifying the arugments for a given sentence and predicate. Predicate used as semantic role labeling input are extracted using lexical analysis results such as POS-tagging, but the problem is that predicate can't extract all linguistic patterns because predicate in korean language has various patterns, depending on the meaning of sentence. In this paper, we propose a korean predicate recognition method using neural network model with pre-trained embedding models and lexical features. The experiments compare the performance on the hyper parameters of models and with or without the use of embedding models and lexical features. As a result, we confirm that the performance of the proposed neural network model was 92.63%.

Automatic Word Spacing of the Korean Sentences by Using End-to-End Deep Neural Network (종단 간 심층 신경망을 이용한 한국어 문장 자동 띄어쓰기)

  • Lee, Hyun Young;Kang, Seung Shik
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.11
    • /
    • pp.441-448
    • /
    • 2019
  • Previous researches on automatic spacing of Korean sentences has been researched to correct spacing errors by using n-gram based statistical techniques or morpheme analyzer to insert blanks in the word boundary. In this paper, we propose an end-to-end automatic word spacing by using deep neural network. Automatic word spacing problem could be defined as a tag classification problem in unit of syllable other than word. For contextual representation between syllables, Bi-LSTM encodes the dependency relationship between syllables into a fixed-length vector of continuous vector space using forward and backward LSTM cell. In order to conduct automatic word spacing of Korean sentences, after a fixed-length contextual vector by Bi-LSTM is classified into auto-spacing tag(B or I), the blank is inserted in the front of B tag. For tag classification method, we compose three types of classification neural networks. One is feedforward neural network, another is neural network language model and the other is linear-chain CRF. To compare our models, we measure the performance of automatic word spacing depending on the three of classification networks. linear-chain CRF of them used as classification neural network shows better performance than other models. We used KCC150 corpus as a training and testing data.

The Sentence Similarity Measure Using Deep-Learning and Char2Vec (딥러닝과 Char2Vec을 이용한 문장 유사도 판별)

  • Lim, Geun-Young;Cho, Young-Bok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.10
    • /
    • pp.1300-1306
    • /
    • 2018
  • The purpose of this study is to see possibility of Char2Vec as alternative of Word2Vec that most famous word embedding model in Sentence Similarity Measure Problem by Deep-Learning. In experiment, we used the Siamese Ma-LSTM recurrent neural network architecture for measure similarity two random sentences. Siamese Ma-LSTM model was implemented with tensorflow. We train each model with 200 epoch on gpu environment and it took about 20 hours. Then we compared Word2Vec based model training result with Char2Vec based model training result. as a result, model of based with Char2Vec that initialized random weight record 75.1% validation dataset accuracy and model of based with Word2Vec that pretrained with 3 million words and phrase record 71.6% validation dataset accuracy. so Char2Vec is suitable alternate of Word2Vec to optimize high system memory requirements problem.

A Clustering-based Undersampling Method to Prevent Information Loss from Text Data (텍스트 데이터의 정보 손실을 방지하기 위한 군집화 기반 언더샘플링 기법)

  • Jong-Hwi Kim;Saim Shin;Jin Yea Jang
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.251-256
    • /
    • 2022
  • 범주 불균형은 분류 모델이 다수 범주에 편향되게 학습되어 소수 범주에 대한 분류 성능을 떨어뜨리는 문제를 야기한다. 언더 샘플링 기법은 다수 범주 데이터의 수를 줄여 소수 범주와 균형을 이루게하는 대표적인 불균형 해결 방법으로, 텍스트 도메인에서의 기존 언더 샘플링 연구에서는 단어 임베딩과 랜덤 샘플링과 같은 비교적 간단한 기법만이 적용되었다. 본 논문에서는 트랜스포머 기반 문장 임베딩과 군집화 기반 샘플링 방법을 통해 텍스트 데이터의 정보 손실을 최소화하는 언더샘플링 방법을 제안한다. 제안 방법의 검증을 위해, 감성 분석 실험에서 제안 방법과 랜덤 샘플링으로 추출한 훈련 세트로 모델을 학습하고 성능을 비교 평가하였다. 제안 방법을 활용한 모델이 랜덤 샘플링을 활용한 모델에 비해 적게는 0.2%, 많게는 2.0% 높은 분류 정확도를 보였고, 이를 통해 제안하는 군집화 기반 언더 샘플링 기법의 효과를 확인하였다.

  • PDF

Linguistic Features Discrimination for Social Issue Risk Classification (사회적 이슈 리스크 유형 분류를 위한 어휘 자질 선별)

  • Oh, Hyo-Jung;Yun, Bo-Hyun;Kim, Chan-Young
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.11
    • /
    • pp.541-548
    • /
    • 2016
  • The use of social media is already essential as a source of information for listening user's various opinions and monitoring. We define social 'risks' that issues effect negative influences for public opinion in social media. This paper aims to discriminate various linguistic features and reveal their effects for building an automatic classification model of social risks. Expecially we adopt a word embedding technique for representation of linguistic clues in risk sentences. As a preliminary experiment to analyze characteristics of individual features, we revise errors in automatic linguistic analysis. At the result, the most important feature is NE (Named Entity) information and the best condition is when combine basic linguistic features. word embedding, and word clusters within core predicates. Experimental results under the real situation in social bigdata - including linguistic analysis errors - show 92.08% and 85.84% in precision respectively for frequent risk categories set and full test set.

Out-of-Scope Intent Detection Method using T5-based Sentence Embedding and Temperature Scaling (T5-기반 문장임베딩과 템퍼러처 스케일링 기법을 사용한 범위 외 의도 탐지 기법)

  • Myunghoon Lee;Eunyoung Song;Hyunyoung Lee;Jihui Im
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.521-525
    • /
    • 2022
  • 사용자와 상호작용하는 대화시스템에서 사용자의 의도를 이해하기 위한 의도 분류는 중요한 역할을 한다. 하지만, 실제 대화시스템에서는 범위 내의 의도를 가진 발화 뿐만 아니라 범위 외의 의도를 가진 발화에 대한 인식도 중요하다. 본 논문에서는 기존에 사용되던 인코더 기반의 모델이 아닌 인코더-디코더 구조를 가지는 T5 모델을 활용하여 의도 분류 실험을 진행하였다. 또한, (K+1)-way 의도 탐지 방식이 아닌 Kway의 방식에 템퍼러처 스케일링 기법을 적용하여 범위 외 의도 발화 데이터 구축과 재학습이 필요 없는 확장성 있는 범위 외 의도 탐지 방법을 제안하였다. 범위 내 의도 분류 실험 결과 인코더-디코더 구조의 T5 모델이 인코더 구조의 모델에 비해 높은 성능을 보이며, 흔히 생성 태스크에서 활용되던 모델의 분류 태스크로의 확장 가능성을 확인하였다. 또한, 범위 외 의도 탐지 실험 결과에서는 T5 모델이 인코더 구조의 모델인 RoBERTa 보다 범위 외 탐지 재현율이 14.2%p 이상의 높은 성능을 기록하여 인코더-디코더 구조를 활용한 모델이 인코더 구조를 활용한 모델보다 범위 외 의도 탐지에 강건함을 확인하였다.

  • PDF