• 제목/요약/키워드: 문장임베딩

검색결과 117건 처리시간 0.026초

사전학습 모델을 이용한 음식업종 고객 발화 의도 분류 분석 (Analysis of utterance intent classification of cutomer in the food industry using Pretrained Model)

  • 김준회;임희석
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.43-44
    • /
    • 2022
  • 기존 자연어 처리 모델은 문맥 단위 단어 임베딩을 처리하지 못하는 한계점을 가지고 있는 한편 최근 BERT 기반 사전학습 모델들은 문장 단위 임베딩이 가능하고 사전학습을 통해 학습 효율이 비약적으로 개선되었다는 특징이 있다. 본 논문에서는 사전학습 언어 모델들을 이용하여 음식점, 배달전문점 등 음식 업종에서 발생한 고객 발화 의도를 분류하고 모델별 성능을 비교하여 최적의 모델을 제안하고자 한다. 연구결과, 사전학습 모델의 한국어 코퍼스와 Vocab 사이즈가 클수록 고객의 발화 의도를 잘 예측하였다. 한편, 본 연구에서 발화자의 의도를 크게 문의와 요청으로 구분하여 진행하였는데, 문의와 요청의 큰 차이점인 '물음표'를 제거한 후 성능을 비교해본 결과, 물음표가 존재할 때 발화자 의도 예측에 좋은 성능을 보였다. 이를 통해 음식 업종에서 발화자의 의도를 예측하는 시스템을 개발하고 챗봇 시스템 등에 활용한다면, 발화자의 의도에 적합한 서비스를 정확하게 적시에 제공할 수 있을 것으로 기대한다.

  • PDF

BERT 레이어에 따른 동형이의어 의미 표현 비교 (Comparison of Homograph Meaning Representation according to BERT's layers)

  • 강일민;최용석;이공주
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.161-164
    • /
    • 2019
  • 본 논문은 BERT 모델을 이용하여 동형이의어의 단어 표현(Word Representation) 차이에 대한 실험을 한다. BERT 모델은 Transformer 모델의 인코더 부분을 사용하여 양방향을 고려한 단어 예측과 문장 수준의 이해를 얻을 수 있는 모델이다. 실험은 동형이의어에 해당되는 단어의 임베딩으로 군집화를 수행하고 이를 Purity와 NMI 점수로 계산하였다. 또한 각 단어 임베딩 사이를 코사인거리(Cosine Distance)로 계산하고 t-SNE를 통해 계층에 따른 변화를 시각화하였다. 군집된 결과는 모델의 중간 계층에서 점수가 가장 높았으며, 코사인거리는 8계층까지는 증가하고 11계층에서 급격히 값이 변하는 것을 확인할 수 있었다.

  • PDF

기계학습 기반 단문에서의 문장 분류 방법을 이용한 한국표준산업분류 (Standard Industrial Classification in Short Sentence Based on Machine Learning Approach)

  • 오교중;최호진;안현각
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.394-398
    • /
    • 2020
  • 산업/직업분류 자동코딩시스템은 고용조사 등을 함에 있어 사업체 정보, 업무, 직급, 부서명 등 사용자의 다양한 입력을 표준 산업/직업분류에 맞춰 코드 정보를 제공해주는 시스템이다. 입력 데이터로부터 비지도학습 기반의 색인어 추출 모델을 학습하고, 부분단어 임베딩이 적용된 색인어 임베딩 모델을 통해 입력 벡터를 추출 후, 출력 분류 코드를 인코딩하여 지도학습 모델에서 학습하는 방법을 적용하였다. 기존 시스템의 분류 결과 데이터를 통해 대, 중, 소, 세분류에서 높은 정확도의 모델을 구축할 수 있으며, 기계학습 기술의 적용이 가능한 시스템임을 알 수 있다.

  • PDF

사건 관계 추출을 위한 사전 학습 임베딩 비교 (Comparing of pre-trained Embedding for Event Extraction)

  • 양승무;이미라;정찬희;정혜동
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.626-628
    • /
    • 2021
  • 사건 관계 추출 태스크는 구조화되지 않은 텍스트 데이터에서 사건의 구조화된 표현을 얻는 것이다. 하나의 문장에서도 많은 정보를 얻을 수 있는 중요한 태스크임에도 불구하고, 다양한 사전 학습 모델을 적용한 연구는 아직 활발하게 연구되지 않고 있다. 따라서 본 연구에서 사전 학습된 모델의 임베딩 기법 중 BERT, RoBERTa, SpanBERT에 각각 base, large 아키텍처를 적용하여 실험하였다. 사건을 식별하기 위한 trigger와 해당 trigger의 세부 argument를 식별하기 위한 분류기를 상위레이어로 각각 설계하였고, 다양한 배치 크기를 적용하여 실험하였다. 성능평가는 trigger/argument 각각 F1 score를 적용하였고, 결과는 RoBERTa large 모델에서 좋은 성능을 보인 것을 확인하였다.

언어학 관점에서의 한국어 대조학습 기반 문장 임베딩의 허위 문맥화에 대한 고찰 (Analyzing Spurious Contextualization of Korean Contrastive Sentence Representation from the Perspective of Linguistics)

  • 정유현;한명수;채동규
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.468-473
    • /
    • 2023
  • 본 논문은 사전 학습 언어 모델의 특성인 이방성과 문맥화에 주목하여 이에 대한 분석 실험과 한국어 언어 모델만의 새로운 관점을 제안한다. 최근 진행된 영어 언어 모델 분석 연구에서 영감을 받아, 한국어 언어 모델에서도 대조학습을 통한 이방성과 문맥화의 변화를 보고하였으며, 다양한 모델에 대하여 토큰들을 문맥화 정도에 따라 분류하였다. 또한, 한국어의 언어학적 특성을 고려하여, 허위 문맥화를 완화할 수 있는 토큰을 문맥 중심어로, 문맥 중심어의 임베딩을 모방하는 토큰을 문맥 기능어로 분류하는 기준을 제안하였다. 간단한 적대적 데이터 증강 실험을 통하여 제안하는 분류 기준의 가능성을 확인하였으며, 본 논문이 향후 평가 벤치마크 및 데이터셋 제작, 나아가 한국어를 위한 강건한 학습 방법론에 기여하길 바란다.

  • PDF

비디오 캡셔닝을 적용한 수어 번역 및 행동 인식을 적용한 수어 인식 (Sign language translation using video captioning and sign language recognition using action recognition)

  • 김기덕;이근후
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2024년도 제69차 동계학술대회논문집 32권1호
    • /
    • pp.317-319
    • /
    • 2024
  • 본 논문에서는 비디오 캡셔닝 알고리즘을 적용한 수어 번역 및 행동 인식 알고리즘을 적용한 수어 인식 알고리즘을 제안한다. 본 논문에 사용된 비디오 캡셔닝 알고리즘으로 40개의 연속된 입력 데이터 프레임을 CNN 네트워크를 통해 임베딩 하고 트랜스포머의 입력으로 하여 문장을 출력하였다. 행동 인식 알고리즘은 랜덤 샘플링을 하여 한 영상에 40개의 인덱스에서 40개의 연속된 데이터에 CNN 네트워크를 통해 임베딩하고 GRU, 트랜스포머를 결합한 RNN 모델을 통해 인식 결과를 출력하였다. 수어 번역에서 BLEU-4의 경우 7.85, CIDEr는 53.12를 얻었고 수어 인식으로 96.26%의 인식 정확도를 얻었다.

  • PDF

단어 의미와 자질 거울 모델을 이용한 단어 임베딩 (A Word Embedding used Word Sense and Feature Mirror Model)

  • 이주상;신준철;옥철영
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제23권4호
    • /
    • pp.226-231
    • /
    • 2017
  • 단어 표현은 기계학습을 사용하는 자연어 처리 분야에서 중요하다. 단어 표현은 단어를 텍스트가 아닌 컴퓨터가 분별할 수 있는 심볼로 표현하는 방법이다. 기존 단어 임베딩은 대량의 말뭉치를 이용하여 문장에서 학습할 단어의 주변 단어를 이용하여 학습한다. 하지만 말뭉치 기반의 단어 임베딩은 단어의 등장 빈도수나 학습할 단어의 수를 늘리기 위해서는 많은 양의 말뭉치를 필요로 한다. 본 논문에서는 말뭉치 기반이 아닌 단어의 뜻풀이와 단어의 의미 관계(상위어, 반의어)를 이용하며 기존 Word2Vec의 Skip-Gram을 변형한 자질거울모델을 사용하여 단어를 벡터로 표현하는 방법을 제시한다. 기존 Word2Vec에 비해 적은 데이터로 많은 단어들을 벡터로 표현 가능하였으며 의미적으로 유사한 단어들이 비슷한 벡터를 형성하는 것을 확인할 수 있다. 그리고 반의어 관계에 있는 두 단어의 벡터가 구분되는 것을 확인할 수 있다.

의생명과학 기반 기학습된 워드 임베딩을 이용한 의생명과학 논문 속의 돌연변이-약물 관계 추출 연구 (Research on Identifying Mutation-Drug Relationship in Biomedical Literature Using Biomedical Context based pre-trained word embedding)

  • 김호준;원성연;강승우;이규범;김병건;김선규;강재우
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2017년도 춘계학술발표대회
    • /
    • pp.774-777
    • /
    • 2017
  • 의생명과학분야가 계속 발전됨에 따라 매일 평균 3천여 편에 달하는 방대한 양의 의생명과학분야 문헌들이 나오고 있다. 많은 연구가 진행될수록, 새로이 규명된 관계를 습득하고 체계화하는 일이 연구자와 의료계 종사자들에게 더 중요해지고 있다. 하지만 현재로서는 의생명과학분야에 어느 정도의 지식이 있는 사람이 직접 논문을 읽고 해당 논문에서 밝히고 있는 정보를 정리해야만 하는 상황이며, 이로는 기하급수적으로 쌓이는 정보의 양을 대처하기 어렵다. 이를 해결하기 위해 본 논문에서는 기계 학습을 통한 생명의료 객체관계 자동추출 연구를 이용하여 의생명과학분야의 정보를 체계화 하고자 한다. 본 논문에서는 돌연변이와 약물이 함께 등장하는 논문을 뽑아내어 글을 자연어 문장 단위로 나누었다. 추출한 돌연변이와 약물 간의 관계를 직접 사람에 의해 참거짓을 판명하였고, 해당 데이터셋을 기계학습에 이용하여 돌연변이와 약물 간의 관계를 학습시켰다. 최종적으로 GoogleNews의 기사들로 기학습된 워드임베딩, 의생명과학분야 문헌들을 이용하여 기학습된 워드임베딩을 이용하여 학습의 성능을 비교하였고, 의생명과학-문맥 특이적인 워드임베딩이 갖는 강점을 보고한다. 해당 연구를 통해 실제로 논문을 읽지 않고도 의생명과학분야 논문의 핵심적인 내용을 뽑아내는 자동화 시스템을 구축하는 데에 이바지하고, 의생명공학 연구자들의 연구에 핵심적인 도움이 되는 디딤돌이 되고자 한다.

워드 임베딩 클러스터링을 활용한 리뷰 다중문서 요약기법 (Multi-Document Summarization Method of Reviews Using Word Embedding Clustering)

  • 이필원;황윤영;최종석;신용태
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권11호
    • /
    • pp.535-540
    • /
    • 2021
  • 다중문서는 하나의 주제가 아닌 다양한 주제로 구성된 문서를 의미하며 대표적인 예로 온라인 리뷰가 있다. 온라인 리뷰는 정보량이 방대하기 때문에 요약하기 위한 여러 시도가 있었다. 그러나 기존의 요약모델을 통해 리뷰를 일괄적으로 요약할 경우 리뷰를 구성하고 있는 다양한 주제가 소실되는 문제가 발생한다. 따라서 본 논문에서는 주제의 손실을 최소화하며 리뷰를 요약하기 위한 기법을 제시한다. 제안하는 기법은 전처리, 중요도 평가, BERT를 활용한 임베딩 치환, 임베딩 클러스터링과 같은 과정을 통해 리뷰를 분류한다. 그리고 분류된 문장은 학습된 Transformer 요약모델을 통해 최종 요약을 생성한다. 제안하는 모델의 성능 평가는 기존의 요약모델인 seq2seq 모델과 ROUGE 스코어와 코사인 유사도를 평가하여 비교하였으며 기존의 요약모델과 비교하여 뛰어난 성능의 요약을 수행하였다.

Noisy 텍스트 임베딩을 이용한 한국어 감정 분석 (Korean Sentiment Analysis by using Noisy Text Embedding)

  • 이현영;강승식
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.506-509
    • /
    • 2019
  • 신문기사나 위키피디아와 같이 정보를 전달하는 텍스트와는 달리 사람의 감정 및 의도를 표현하는 텍스트는 다양한 형태의 노이즈를 포함한다. 본 논문에서는 data-driven 방법을 이용하여 노이즈와 단어들 사이의 관계를 LSTM을 이용하여 하나의 벡터로 요약하는 모델을 제안한다. 노이즈 문장 벡터를 표현하는 방식으로는 단방향 LSTM 인코더과 양방향 LSTM 인코더의 두 가지 모델을 이용하여 노이즈를 포함하는 영화 리뷰 데이터를 가지고 감정 분석 실험을 하였고, 실험 결과 단방향 LSTM 인코더보다 양방향 LSTM인 코더가 우수한 성능을 보여주었다.

  • PDF