• Title/Summary/Keyword: 문장임베딩

Search Result 117, Processing Time 0.023 seconds

Self-supervised Learning Method using Heterogeneous Mass Corpus for Sentence Embedding Model (이종의 말뭉치를 활용한 자기 지도 문장 임베딩 학습 방법)

  • Kim, Sung-Ju;Suh, Soo-Bin;Park, Jin-Seong;Park, Sung-Hyun;Jeon, Dong-Hyeon;Kim, Seon-Hoon;Kim, Kyung-Duk;Kang, In-Ho
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.32-36
    • /
    • 2020
  • 문장의 의미를 잘 임베딩하는 문장 인코더를 만들기 위해 비지도 학습과 지도 학습 기반의 여러 방법이 연구되고 있다. 지도 학습 방식은 충분한 양의 정답을 구축하는데 어려움이 있다는 한계가 있다. 반면 지금까지의 비지도 학습은 단일 형식의 말뭉치에 한정해서 입력된 현재 문장의 다음 문장을 생성 또는 예측하는 형식으로 문제를 정의하였다. 본 논문에서는 위키피디아, 뉴스, 지식 백과 등 문서 형태의 말뭉치에 더해 지식인이나 검색 클릭 로그와 같은 구성이 다양한 이종의 대량 말뭉치를 활용하는 자기 지도 학습 방법을 제안한다. 각 형태의 말뭉치에 적합한 자기 지도 학습 문제를 설계하고 학습한 경우 KorSTS 데이셋의 비지도 모델 성능 평가에서 기준 모델 대비 7점 가량의 성능 향상이 있었다.

  • PDF

Document Embedding for Entity Linking in Social Media (문서 임베딩을 이용한 소셜 미디어 문장의 개체 연결)

  • Park, Youngmin;Jeong, Soyun;Lee, Jeong-Eom;Shin, Dongsoo;Kim, Seona;Seo, Junyun
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.194-196
    • /
    • 2017
  • 기존의 단어 기반 접근법을 이용한 개체 연결은 단어의 변형, 신조어 등이 빈번하게 나타나는 비정형 문장에 대해서는 좋은 성능을 기대하기 어렵다. 본 논문에서는 문서 임베딩과 선형 변환을 이용하여 단어 기반 접근법의 단점을 해소하는 개체 연결을 제안한다. 문서 임베딩은 하나의 문서 전체를 벡터 공간에 표현하여 문서 간 의미적 유사도를 계산할 수 있다. 본 논문에서는 또한 비교적 정형 문장인 위키백과 문장과 비정형 문장인 소셜 미디어 문장 사이에 선형 변환을 수행하여 두 문형 사이의 표현 격차를 해소하였다. 제안하는 개체 연결 방법은 대표적인 소셜 미디어인 트위터 환경 문장에서 단어 기반 접근법과 비교하여 높은 성능 향상을 보였다.

  • PDF

The Bi-Cross Pretraining Method to Enhance Language Representation (Bi-Cross 사전 학습을 통한 자연어 이해 성능 향상)

  • Kim, Sung-ju;Kim, Seonhoon;Park, Jinseong;Yoo, Kang Min;Kang, Inho
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.320-325
    • /
    • 2021
  • BERT는 사전 학습 단계에서 다음 문장 예측 문제와 마스킹된 단어에 대한 예측 문제를 학습하여 여러 자연어 다운스트림 태스크에서 높은 성능을 보였다. 본 연구에서는 BERT의 사전 학습 문제 중 다음 문장 예측 문제에 대해 주목했다. 다음 문장 예측 문제는 자연어 추론 문제와 질의 응답 문제와 같이 임의의 두 문장 사이의 관계를 모델링하는 문제들에 성능 향상을 위해 사용되었다. 하지만 BERT의 다음 문장 예측 문제는 두 문장을 특수 토큰으로 분리하여 단일 문자열 형태로 모델에 입력으로 주어지는 cross-encoding 방식만을 학습하기 때문에 문장을 각각 인코딩하는 bi-encoding 방식의 다운스트림 태스크를 고려하지 않은 점에서 아쉬움이 있다. 본 논문에서는 기존 BERT의 다음 문장 예측 문제를 확장하여 bi-encoding 방식의 다음 문장 예측 문제를 추가적으로 사전 학습하여 단일 문장 분류 문제와 문장 임베딩을 활용하는 문제에서 성능을 향상 시키는 Bi-Cross 사전 학습 기법을 소개한다. Bi-Cross 학습 기법은 영화 리뷰 감성 분류 데이터 셋인 NSMC 데이터 셋에 대해 학습 데이터의 0.1%만 사용하는 학습 환경에서 Bi-Cross 사전 학습 기법 적용 전 모델 대비 5점 가량의 성능 향상이 있었다. 또한 KorSTS의 bi-encoding 방식의 문장 임베딩 성능 평가에서 Bi-Cross 사전 학습 기법 적용 전 모델 대비 1.5점의 성능 향상을 보였다.

  • PDF

DBERT: Embedding Model Based on Contrastive Learning Considering the Characteristics of Multi-turn Context (DBERT: 멀티턴 문맥의 특징을 고려한 대조 학습 기반의 임베딩 모델링)

  • Sangmin Park;Jaeyun Lee;Jaieun Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.272-274
    • /
    • 2022
  • 최근에는 사람과 기계가 자유롭게 대화를 주고받을 수 있는 자유 주제 대화 시스템(Open-domain Dialogue System)이 다양한 서비스에 활용되고 있다. 자유 주제 대화 시스템이 더욱 다양한 답변을 제공할 수 있도록 사전학습 기반의 생성 언어모델이 활용되고 있지만, 답변 제공의 안정성이 떨어져 검색을 활용한 방법 또한 함께 활용되고 있다. 검색 기반 방법은 사용자의 대화가 들어오면 사전에 구축된 데이터베이스에서 유사한 대화를 검색하고 준비되어있는 답변을 제공하는 기술이다. 하지만 멀티턴으로 이루어진 대화는 일반적인 문서의 문장과 다르게 각 문장에 대한 발화의 주체가 변경되기 때문에 연속된 발화 문장이 문맥적으로 밀접하게 연결되지 않는 경우가 있다. 본 논문에서는 이와 같은 대화의 특징을 고려하여 멀티턴 대화를 효율적으로 임베딩 할 수 있는 DBERT(DialogueBERT) 모델을 제안한다. 기존 공개된 사전학습 언어모델 기반의 문장 임베딩 모델과 비교 평가 실험을 통해 제안하는 방법의 우수성을 입증한다.

  • PDF

Group-based speaker embeddings for text-independent speaker verification (문장 독립 화자 검증을 위한 그룹기반 화자 임베딩)

  • Jung, Youngmoon;Eom, Youngsik;Lee, Yeonghyeon;Kim, Hoirin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.5
    • /
    • pp.496-502
    • /
    • 2021
  • Recently, deep speaker embedding approach has been widely used in text-independent speaker verification, which shows better performance than the traditional i-vector approach. In this work, to improve the deep speaker embedding approach, we propose a novel method called group-based speaker embedding which incorporates group information. We cluster all speakers of the training data into a predefined number of groups in an unsupervised manner, so that a fixed-length group embedding represents the corresponding group. A Group Decision Network (GDN) produces a group weight, and an aggregated group embedding is generated from the weighted sum of the group embeddings and the group weights. Finally, we generate a group-based embedding by adding the aggregated group embedding to the deep speaker embedding. In this way, a speaker embedding can reduce the search space of the speaker identity by incorporating group information, and thereby can flexibly represent a significant number of speakers. We conducted experiments using the VoxCeleb1 database to show that our proposed approach can improve the previous approaches.

Korean Hedge Detection Using Word Usage Information and Neural Networks (단어 쓰임새 정보와 신경망을 활용한 한국어 Hedge 인식)

  • Ren, Mei-Ying;Kang, Sin-jae
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.9
    • /
    • pp.317-325
    • /
    • 2017
  • In this paper, we try to classify Korean hedge sentences, which are regarded as not important since they express uncertainties or personal assumptions. Through previous researches to English language, we found dependency information of words has been one of important features in hedge classification, but not used in Korean researches. Additionally, we found that word embedding vectors include the word usage information. We assume that the word usage information could somehow represent the dependency information. Therefore, we utilized word embedding and neural networks in hedge sentence classification. We used more than one and half million sentences as word embedding dataset and also manually constructed 12,517-sentence hedge classification dataset obtained from online news. We used SVM and CRF as our baseline systems and the proposed system outperformed SVM by 7.2%p and also CRF by 1.2%p. This indicates that word usage information has positive impacts on Korean hedge classification.

Implementation of Korean Sentence Similarity using Sent2Vec Sentence Embedding (Sent2Vec 문장 임베딩을 통한 한국어 유사 문장 판별 구현)

  • Park, Sang-Kil;Shin, MyeongCheol
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.541-545
    • /
    • 2018
  • 본 논문에서는 Sent2Vec을 이용한 문장 임베딩으로 구현한 유사 문장 판별 시스템을 제안한다. 또한 한국어 특성에 맞게 모델을 개선하여 성능을 향상시키는 방법을 소개한다. 고성능 라이브러리 구현과 제품화 가능한 수준의 완성도 높은 구현을 보였으며, 자체 구축한 평가셋으로 한국어 특성을 반영한 모델에 대한 P@1 평가 결과 Word2Vec CBOW에 비해 9.25%, Sent2Vec에 비해 1.93% 더 높은 성능을 보였다.

  • PDF

SMS Text Messages Filtering using Word Embedding and Deep Learning Techniques (워드 임베딩과 딥러닝 기법을 이용한 SMS 문자 메시지 필터링)

  • Lee, Hyun Young;Kang, Seung Shik
    • Smart Media Journal
    • /
    • v.7 no.4
    • /
    • pp.24-29
    • /
    • 2018
  • Text analysis technique for natural language processing in deep learning represents words in vector form through word embedding. In this paper, we propose a method of constructing a document vector and classifying it into spam and normal text message, using word embedding and deep learning method. Automatic spacing applied in the preprocessing process ensures that words with similar context are adjacently represented in vector space. Additionally, the intentional word formation errors with non-alphabetic or extraordinary characters are designed to avoid being blocked by spam message filter. Two embedding algorithms, CBOW and skip grams, are used to produce the sentence vector and the performance and the accuracy of deep learning based spam filter model are measured by comparing to those of SVM Light.

Question Similarity Analysis in dialogs with Automatic Feature Extraction (자동 추출 자질을 이용한 대화 속 질의 문장 유사성 분석)

  • Oh, KyoJoong;Lee, DongKun;Lim, Chae-Gyun;Choi, Ho-Jin
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.347-351
    • /
    • 2018
  • 이 논문은 대화 시스템에서 질의를 이해하기 위해 딥 러닝 모델을 통해 추출된 자동 추출 자질을 이용하여 문장의 유사성을 분석하는 방법에 대해 기술한다. 문장 간 유사성을 분석하기 위한 자동 추출 자질로써, 문장 내 표현 순차적 정보를 반영하기 위한 RNN을 이용하여 생성한 문장 벡터와, 어순에 관계 없이 언어 모델을 학습하기 위한 CNN을 이용하여 생성한 문장 벡터를 사용한다. 이렇게 자동으로 추출된 문장 임베딩 자질은 금융서비스 대화에서 입력 문장을 분류하거나 문장 간 유사성을 분석하는데 이용된다. 유사성 분석 결과는 질의 문장과 관련된 FAQ 문장을 찾거나 답변 지식을 찾는데 활용된다.

  • PDF

A Similarity-based Dialogue Modeling with Case Frame and Word Embedding (격틀과 워드 임베딩을 활용한 유사도 기반 대화 모델링)

  • Lee, Hokyung;Bae, Kyoungman;Ko, Youngjoong
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.220-225
    • /
    • 2016
  • 본 논문에서는 격틀과 워드 임베딩을 활용한 유사도 기반 대화 모델링을 제안한다. 기존의 유사도 기반 대화 모델링 방법은 형태소, 형태소 표지, 개체명, 토픽 자질, 핵심단어 등을 대화 말뭉치에서 추출하여 BOW(Bag Of Words) 자질로 사용하였기 때문에 입력된 사용자 발화에 포함된 단어들의 주어, 목적어와 같은 문장성분들의 위치적 역할을 반영할 수 가 없다. 또한, 의미적으로 유사하지만 다른 형태소를 가지는 문장 성분들의 경우 유사도 계산에 반영되지 않는 형태소 불일치 문제가 존재한다. 이러한 문제점을 해결하기 위해서, 위치적 정보를 반영하기 위한 문장성분 기반의 격틀과 형태소 불일치 문제를 해결하기 위한 워드 임베딩을 활용하여 개선된 유사도 기반 대화 모델링을 제안한다. 개선된 유사도 기반 대화 모델링은 MRR 성능 약 92%의 성능을 나타낸다.

  • PDF