Kim, Sung-Ju;Suh, Soo-Bin;Park, Jin-Seong;Park, Sung-Hyun;Jeon, Dong-Hyeon;Kim, Seon-Hoon;Kim, Kyung-Duk;Kang, In-Ho
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.32-36
/
2020
문장의 의미를 잘 임베딩하는 문장 인코더를 만들기 위해 비지도 학습과 지도 학습 기반의 여러 방법이 연구되고 있다. 지도 학습 방식은 충분한 양의 정답을 구축하는데 어려움이 있다는 한계가 있다. 반면 지금까지의 비지도 학습은 단일 형식의 말뭉치에 한정해서 입력된 현재 문장의 다음 문장을 생성 또는 예측하는 형식으로 문제를 정의하였다. 본 논문에서는 위키피디아, 뉴스, 지식 백과 등 문서 형태의 말뭉치에 더해 지식인이나 검색 클릭 로그와 같은 구성이 다양한 이종의 대량 말뭉치를 활용하는 자기 지도 학습 방법을 제안한다. 각 형태의 말뭉치에 적합한 자기 지도 학습 문제를 설계하고 학습한 경우 KorSTS 데이셋의 비지도 모델 성능 평가에서 기준 모델 대비 7점 가량의 성능 향상이 있었다.
Park, Youngmin;Jeong, Soyun;Lee, Jeong-Eom;Shin, Dongsoo;Kim, Seona;Seo, Junyun
Annual Conference on Human and Language Technology
/
2017.10a
/
pp.194-196
/
2017
기존의 단어 기반 접근법을 이용한 개체 연결은 단어의 변형, 신조어 등이 빈번하게 나타나는 비정형 문장에 대해서는 좋은 성능을 기대하기 어렵다. 본 논문에서는 문서 임베딩과 선형 변환을 이용하여 단어 기반 접근법의 단점을 해소하는 개체 연결을 제안한다. 문서 임베딩은 하나의 문서 전체를 벡터 공간에 표현하여 문서 간 의미적 유사도를 계산할 수 있다. 본 논문에서는 또한 비교적 정형 문장인 위키백과 문장과 비정형 문장인 소셜 미디어 문장 사이에 선형 변환을 수행하여 두 문형 사이의 표현 격차를 해소하였다. 제안하는 개체 연결 방법은 대표적인 소셜 미디어인 트위터 환경 문장에서 단어 기반 접근법과 비교하여 높은 성능 향상을 보였다.
Kim, Sung-ju;Kim, Seonhoon;Park, Jinseong;Yoo, Kang Min;Kang, Inho
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.320-325
/
2021
BERT는 사전 학습 단계에서 다음 문장 예측 문제와 마스킹된 단어에 대한 예측 문제를 학습하여 여러 자연어 다운스트림 태스크에서 높은 성능을 보였다. 본 연구에서는 BERT의 사전 학습 문제 중 다음 문장 예측 문제에 대해 주목했다. 다음 문장 예측 문제는 자연어 추론 문제와 질의 응답 문제와 같이 임의의 두 문장 사이의 관계를 모델링하는 문제들에 성능 향상을 위해 사용되었다. 하지만 BERT의 다음 문장 예측 문제는 두 문장을 특수 토큰으로 분리하여 단일 문자열 형태로 모델에 입력으로 주어지는 cross-encoding 방식만을 학습하기 때문에 문장을 각각 인코딩하는 bi-encoding 방식의 다운스트림 태스크를 고려하지 않은 점에서 아쉬움이 있다. 본 논문에서는 기존 BERT의 다음 문장 예측 문제를 확장하여 bi-encoding 방식의 다음 문장 예측 문제를 추가적으로 사전 학습하여 단일 문장 분류 문제와 문장 임베딩을 활용하는 문제에서 성능을 향상 시키는 Bi-Cross 사전 학습 기법을 소개한다. Bi-Cross 학습 기법은 영화 리뷰 감성 분류 데이터 셋인 NSMC 데이터 셋에 대해 학습 데이터의 0.1%만 사용하는 학습 환경에서 Bi-Cross 사전 학습 기법 적용 전 모델 대비 5점 가량의 성능 향상이 있었다. 또한 KorSTS의 bi-encoding 방식의 문장 임베딩 성능 평가에서 Bi-Cross 사전 학습 기법 적용 전 모델 대비 1.5점의 성능 향상을 보였다.
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.272-274
/
2022
최근에는 사람과 기계가 자유롭게 대화를 주고받을 수 있는 자유 주제 대화 시스템(Open-domain Dialogue System)이 다양한 서비스에 활용되고 있다. 자유 주제 대화 시스템이 더욱 다양한 답변을 제공할 수 있도록 사전학습 기반의 생성 언어모델이 활용되고 있지만, 답변 제공의 안정성이 떨어져 검색을 활용한 방법 또한 함께 활용되고 있다. 검색 기반 방법은 사용자의 대화가 들어오면 사전에 구축된 데이터베이스에서 유사한 대화를 검색하고 준비되어있는 답변을 제공하는 기술이다. 하지만 멀티턴으로 이루어진 대화는 일반적인 문서의 문장과 다르게 각 문장에 대한 발화의 주체가 변경되기 때문에 연속된 발화 문장이 문맥적으로 밀접하게 연결되지 않는 경우가 있다. 본 논문에서는 이와 같은 대화의 특징을 고려하여 멀티턴 대화를 효율적으로 임베딩 할 수 있는 DBERT(DialogueBERT) 모델을 제안한다. 기존 공개된 사전학습 언어모델 기반의 문장 임베딩 모델과 비교 평가 실험을 통해 제안하는 방법의 우수성을 입증한다.
Recently, deep speaker embedding approach has been widely used in text-independent speaker verification, which shows better performance than the traditional i-vector approach. In this work, to improve the deep speaker embedding approach, we propose a novel method called group-based speaker embedding which incorporates group information. We cluster all speakers of the training data into a predefined number of groups in an unsupervised manner, so that a fixed-length group embedding represents the corresponding group. A Group Decision Network (GDN) produces a group weight, and an aggregated group embedding is generated from the weighted sum of the group embeddings and the group weights. Finally, we generate a group-based embedding by adding the aggregated group embedding to the deep speaker embedding. In this way, a speaker embedding can reduce the search space of the speaker identity by incorporating group information, and thereby can flexibly represent a significant number of speakers. We conducted experiments using the VoxCeleb1 database to show that our proposed approach can improve the previous approaches.
Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
/
v.7
no.9
/
pp.317-325
/
2017
In this paper, we try to classify Korean hedge sentences, which are regarded as not important since they express uncertainties or personal assumptions. Through previous researches to English language, we found dependency information of words has been one of important features in hedge classification, but not used in Korean researches. Additionally, we found that word embedding vectors include the word usage information. We assume that the word usage information could somehow represent the dependency information. Therefore, we utilized word embedding and neural networks in hedge sentence classification. We used more than one and half million sentences as word embedding dataset and also manually constructed 12,517-sentence hedge classification dataset obtained from online news. We used SVM and CRF as our baseline systems and the proposed system outperformed SVM by 7.2%p and also CRF by 1.2%p. This indicates that word usage information has positive impacts on Korean hedge classification.
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.541-545
/
2018
본 논문에서는 Sent2Vec을 이용한 문장 임베딩으로 구현한 유사 문장 판별 시스템을 제안한다. 또한 한국어 특성에 맞게 모델을 개선하여 성능을 향상시키는 방법을 소개한다. 고성능 라이브러리 구현과 제품화 가능한 수준의 완성도 높은 구현을 보였으며, 자체 구축한 평가셋으로 한국어 특성을 반영한 모델에 대한 P@1 평가 결과 Word2Vec CBOW에 비해 9.25%, Sent2Vec에 비해 1.93% 더 높은 성능을 보였다.
Text analysis technique for natural language processing in deep learning represents words in vector form through word embedding. In this paper, we propose a method of constructing a document vector and classifying it into spam and normal text message, using word embedding and deep learning method. Automatic spacing applied in the preprocessing process ensures that words with similar context are adjacently represented in vector space. Additionally, the intentional word formation errors with non-alphabetic or extraordinary characters are designed to avoid being blocked by spam message filter. Two embedding algorithms, CBOW and skip grams, are used to produce the sentence vector and the performance and the accuracy of deep learning based spam filter model are measured by comparing to those of SVM Light.
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.347-351
/
2018
이 논문은 대화 시스템에서 질의를 이해하기 위해 딥 러닝 모델을 통해 추출된 자동 추출 자질을 이용하여 문장의 유사성을 분석하는 방법에 대해 기술한다. 문장 간 유사성을 분석하기 위한 자동 추출 자질로써, 문장 내 표현 순차적 정보를 반영하기 위한 RNN을 이용하여 생성한 문장 벡터와, 어순에 관계 없이 언어 모델을 학습하기 위한 CNN을 이용하여 생성한 문장 벡터를 사용한다. 이렇게 자동으로 추출된 문장 임베딩 자질은 금융서비스 대화에서 입력 문장을 분류하거나 문장 간 유사성을 분석하는데 이용된다. 유사성 분석 결과는 질의 문장과 관련된 FAQ 문장을 찾거나 답변 지식을 찾는데 활용된다.
본 논문에서는 격틀과 워드 임베딩을 활용한 유사도 기반 대화 모델링을 제안한다. 기존의 유사도 기반 대화 모델링 방법은 형태소, 형태소 표지, 개체명, 토픽 자질, 핵심단어 등을 대화 말뭉치에서 추출하여 BOW(Bag Of Words) 자질로 사용하였기 때문에 입력된 사용자 발화에 포함된 단어들의 주어, 목적어와 같은 문장성분들의 위치적 역할을 반영할 수 가 없다. 또한, 의미적으로 유사하지만 다른 형태소를 가지는 문장 성분들의 경우 유사도 계산에 반영되지 않는 형태소 불일치 문제가 존재한다. 이러한 문제점을 해결하기 위해서, 위치적 정보를 반영하기 위한 문장성분 기반의 격틀과 형태소 불일치 문제를 해결하기 위한 워드 임베딩을 활용하여 개선된 유사도 기반 대화 모델링을 제안한다. 개선된 유사도 기반 대화 모델링은 MRR 성능 약 92%의 성능을 나타낸다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.