• 제목/요약/키워드: 문장구조

검색결과 613건 처리시간 0.023초

한국어 수사구조 분류체계 수립 및 주석 코퍼스 구축 (Building an RST-tagged Corpus and its Classification Scheme for Korean News Texts)

  • 노은정;이연수;김연우;이도길
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2016년도 제28회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.33-38
    • /
    • 2016
  • 수사구조는 텍스트의 각 구성 성분이 맺고 있는 관계를 의미하며, 필자의 의도는 논리적인 구조를 통해서 독자에게 더 잘 전달될 수 있다. 따라서 독자의 인지적 효과를 극대화할 수 있도록 수사구조를 고려하여 단락과 문장 구조를 구성하는 것이 필요하다. 그럼에도 불구하고 지금까지 수사구조에 기초한 한국어 분류체계를 만들거나 주석 코퍼스를 설계하려는 시도가 없었다. 본 연구에서는 기존 수사구조 이론을 기반으로, 한국어 보도문 형식에 적합한 30개 유형의 분류체계를 정제하고 최소 담화 단위별로 태깅한 코퍼스를 구축하였다. 또한 구축한 코퍼스를 토대로 중심문장을 비롯한 문장 구조의 특징과 분포 비율, 신문기사의 장르적 특성 등을 살펴봄으로써 텍스트에서 응집성의 실현 양상과 구문상의 특징을 확인하였다. 본 연구는 한국어 담화 구문에 적합한 수사구조 분류체계를 설계하고 이를 이용한 주석 코퍼스를 최초로 구축하였다는 점에서 의의를 갖는다.

  • PDF

품사 정보와 템플릿을 이용한 문장 축소 방법 (A Sentence Reduction Method using Part-of-Speech Information and Templates)

  • 이승수;염기원;박지형;조성배
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권5호
    • /
    • pp.313-324
    • /
    • 2008
  • 문장 축소란 원본 문장의 기본적인 의미를 유지하면서 불필요한 단어나 구를 제거하는 일련의 정보 압축 과정을 의미한다. 기존의 문장 축소에 관한 연구들은 학습 과정에서 대량의 어휘나 구문적 자원을 필요로 하였으며, 복잡한 파싱 과정을 통해서 불필요한 문장의 구성원(예를 들어, 단어나 구, 절 등)들을 제거하여 문장을 요약하였다. 그러나 학습 데이타로부터 얻을 수 있는 어휘적 자원은 매우 한정적이며, 문장의 모호성과 예외적인 표현들 때문에 구문 분석 결과가 명료하게 제공되지 않은 언어에서는 문장 요약이 용이하지 않다. 이에 본 논문에서는 구문 분석을 대체하기 위한 방법으로 템플릿과 품사 정보를 이용한 문장 축소 방법을 제안한다. 제안하는 방법은 요약문의 구조적 형태를 결정하기 위한 문장 축소 템플릿(Sentence Reduction Templates)과 문법적으로 타당한 문장 구조를 구성하는 품사기반 축소규칙(Grammatical POS-based Reduction Rules)을 이용하여 요약 대상 문장의 구성을 분석하고 요약한다. 더불어, 문장 축소 템플릿 적용 시 발생하는 연산량 증가 문제를 은닉 마르코프 모델(HMM: Hidden Markov Model)의 비터비 알고리즘(Viterbi Algorithm)을 이용하여 효과적으로 처리한다. 마지막으로, 본 논문에서 제안한 문장 축소 방법의 결과와 기존 논문의 연구 결과를 비교 및 평가함으로써 제안하는 문장 축소 방법의 유용성을 확인한다.

초등학교 수학과 교육과정의 내용 문장 분석 (An Analysis on Contents Sentences for the Elementary Mathematics Curricula)

  • 강완
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제25권3호
    • /
    • pp.449-460
    • /
    • 2015
  • 초등학교 수학과 교육과정의 문서 구조의 핵심은 내용 영역이다. 제7차 교육과정, 2007 개정 교육과정 및 2009 개정 교육과정에서 초등학교 수학과 내용 영역을 진술하는 문장을 분석하였다. 초등학교 수학과 교육과정의 내용 영역은 대체로 200개 정도의 문장으로 기술되어 있으며, 내용 문장의 종결 어미는 "~ㄹ 수 있다"와 같은 가능형 어미를 사용하고 있다. 초등학교 수학과 교육과정의 내용 영역은 내용 문장의 구조화를 통해서 체계적인 방법으로 관리될 수 있다. 또한 종결 어미를 가능형 어미에서 현재형 어미로 대체하면 학생들의 학습 활동을 보다 구체적이고 다양하게 기술할 수 있다.

뉴럴 한국어 맞춤법 교정기에서 과교정(Overcorrection) 문제 완화 (Alleviation of Overcorrection Problem in Neural Korean Spelling Correction)

  • 박찬준;이연수;양기수;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.582-587
    • /
    • 2020
  • 현재까지 한국어 맞춤법 교정 Task는 대부분 규칙기반 및 통계기반 방식의 연구가 진행되었으며 최근 딥러닝 기반의 한국어 맞춤법 교정에 대한 연구가 진행되고 있다. 맞춤법 교정에서 문법적 또는 철자적으로 틀린 부분을 교정하는 것도 중요하지만 올바른 문장이 입력으로 들어왔을 때 교정을 진행하지 않고 올바른 문장을 출력으로 내보내는 것 또한 중요하다. 규칙기반 맞춤법 교정기 같은 경우 문장의 구조를 흐트러트리지 않고 규칙에 부합하는 오류 부분만 고쳐낸다는 장점이 있으나 신경망 기반의 한국어 맞춤법 교정 같은 경우 Neural Machine Translation(NMT)의 고질적인 문제점인 반복 번역, 생략, UNK(Unknown) 때문에 문장의 구조를 흐트러트리거나 overcorrection(과교정) 하는 경우가 존재한다. 본 논문은 이러한 한계점을 극복하기 위하여 Correct to Correct Mechanism을 제안하며 이를 통해 올바른 문장이 입력으로 들어왔을 시 올바른 문장을 출력하는 성능을 높인다.

  • PDF

음절과 형태소 정보를 이용한 한국어 문장 띄어쓰기 교정 모델 (Korean sentence spacing correction model using syllable and morpheme information)

  • 최정명;오병두;허탁성;정영석;김유섭
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.141-144
    • /
    • 2020
  • 한국어에서 문장의 가독성이나 맥락 파악을 위해 띄어쓰기는 매우 중요하다. 또한 자연 언어 처리를 할 때 띄어쓰기 오류가 있는 문장을 사용하면 문장의 구조가 달라지기 때문에 성능에 영향을 미칠 수 있다. 기존 연구에서는 N-gram 기반 통계적인 방법과 형태소 분석기를 이용하여 띄어쓰기 교정을 해왔다. 최근 들어 심층 신경망을 활용하는 많은 띄어쓰기 교정 연구가 진행되고 있다. 기존 심층 신경망을 이용한 연구에서는 문장을 음절 단위 또는 형태소 단위로 처리하여 교정 모델을 만들었다. 본 연구에서는 음절과 형태소 단위 모두 모델의 입력으로 사용하여 두 정보를 결합하여 띄어쓰기 교정 문제를 해결하고자 한다. 모델은 문장의 음절과 형태소 시퀀스에서 지역적 정보를 학습할 수 있는 Convolutional Neural Network와 순서정보를 정방향, 후방향으로 학습할 수 있는 Bidirectional Long Short-Term Memory 구조를 사용한다. 모델의 성능은 음절의 정확도와 어절의 정밀도, 어절의 재현율, 어절의 F1 score를 사용해 평가하였다. 제안한 모델의 성능 평가 결과 어절의 F1 score가 96.06%로 우수한 성능을 냈다.

  • PDF

문장생성에 의한 통신보조시스템의 설계 및 구현 (Design and Implementation of a Augmentative and Alternative Communication System Using Sentence Generation)

  • 우요섭;민홍기;황인정
    • 한국멀티미디어학회논문지
    • /
    • 제8권9호
    • /
    • pp.1248-1257
    • /
    • 2005
  • 본 논문은 통신보조시스템을 위한 문장생성의 구현과 설계에 관한 것이다. 통신보조시스템은 언어장애인을 위한 보조 시스템으로서 시간과 키의 수를 줄여 문장을 생성하는데 그 목적이 있다. 본 논문에서는 기존의 문장생성의 장단점을 보완하여 문장생성을 하였다. 문장생성을 위하여 동사와 조사에 따라 명사가 한정되는 한글 구조를 이용하였다. 본 논문의 특징은 도메인 개념을 이용하여 명사와 동사를 연결하였다. 문장생성을 위해 한글의 특성으로 구축한 어휘정보를 이용하였다. 또한 현재 문장생성에 관한 여러 방법을 비교하였다. 문장생성은 문장특징 추출에 의한 어휘정보에 바탕을 둔다.

  • PDF

한국어 파서에서의 지역 의존관계의 이용 (Using Local Dependency for Dependency Parser of Korean)

  • 류법모;이종혁;이근배
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1996년도 제8회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.464-468
    • /
    • 1996
  • 본 논문에서는 한국어 의존관계 파서의 정확성 및 효율성을 높이기 위해 구구조 내의 지역적 수식 특성을 반영할 수 있는 지역 의존관계의 사용을 제안한다. 의존문법은 자유어순 언어를 잘 설명할 수 있는 장점이 있지만, 전체 문장구조에 관한 의존제약이 너무 미약하기 때문에 단순히 어절간 구문 의존 제약만으로는 원하지 않는 분석 결과가 너무 많이 생성된다. 그러나 자유어순 언어라 하더라도 지역적인 구구조에는 일정한 어순 제약이 존재한다. 명사구, 용언구 등과 같은 구구조를 분석해 보면 수식어의 지배소는 반드시 그 구 안에 있다. 이러한 구조 정보에 기반을 둔 지역 의존관계 규칙을 이용하면 하나의 의존소에 대해서 지배소로 사용될 수 있는 어절의 범위를 제한하여, 원하지 않는 분석 결과를 줄일 수 있다. 한국어는 기본 문장 구조가 그대로 사용되기보다는 하나 이상의 수의 요소들이 첨가되어 보다 긴 문장 구조로 사용되는 경우가 많기 때문에, 본 논문에서 제안한 방법은 시스템 전체의 성능 및 효율을 크게 향상시킬 수 있다. 실험에서는 파싱의 첫 번째 단계에서 지역 의존관계 규칙을 사용하였을 경우 사용하지 않았을 때에 비해서 의존관계의 수가 평균 69% 정도로 줄어들었다.

  • PDF

복수 대규모 언어 모델에 기반한 제어 가능형 데이터 증강 프레임워크 (Controllable data augmentation framework based on multiple large-scale language models)

  • 강현석;남궁혁;정지수;정상근
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.3-8
    • /
    • 2023
  • 데이터 증강은 인공지능 모델의 학습에서 필요한 데이터의 양이 적거나 편향되어 있는 경우, 이를 보완하여 모델의 성능을 높이는 데 도움이 된다. 이미지와는 달리 자연어의 데이터 증강은 문맥이나 문법적 구조와 같은 특징을 고려해야 하기 때문에, 데이터 증강에 많은 인적자원이 소비된다. 본 연구에서는 복수의 대규모 언어 모델을 사용하여 입력 문장과 제어 조건으로 프롬프트를 구성하는 데 최소한의 인적 자원을 활용한 의미적으로 유사한 문장을 생성하는 방법을 제안한다. 또한, 대규모 언어 모델을 단독으로 사용하는 것만이 아닌 병렬 및 순차적 구조로 구성하여 데이터 증강의 효과를 높이는 방법을 제안한다. 대규모 언어 모델로 생성된 데이터의 유효성을 검증하기 위해 동일한 개수의 원본 훈련 데이터와 증강된 데이터를 한국어 모델인 KcBERT로 다중 클래스 분류를 수행하였을 때의 성능을 비교하였다. 다중 대규모 언어 모델을 사용하여 데이터 증강을 수행하였을 때, 모델의 구조와 관계없이 증강된 데이터는 원본 데이터만을 사용하였을 때보다 높거나 그에 준하는 정확도를 보였다. 병렬 구조의 다중 대규모 언어 모델을 사용하여 400개의 원본 데이터를 증강하였을 때에는, 원본 데이터의 최고 성능인 0.997과 0.017의 성능 차이를 보이며 거의 유사한 학습 효과를 낼 수 있음을 보였다.

  • PDF

텍스트 이해 모델에 기반한 정보 검색 시스템 (Text Undestanding System for Summarization)

  • 송인석;박혁로
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1997년도 제9회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.1-6
    • /
    • 1997
  • 본 논문에서는 인지적 텍스트 이해 모형을 제시하고 이에 기반한 자동 요약 시스템을 구현하였다. 문서는 정보의 단순한 집합체가 아닌 정형화된 언어 표현 양식으로서 단어의 의미적 정보와 함께 표현 양식, 문장의 구조와 문서의 구성을 통해 정보를 전달한다. 요약 목적의 텍스트 이해 및 분석 과정을 위해 경제 분야 기사 1000건에 대한 수동 요약문을 분석, 이해 모델을 정립하였고. 경제 분야 기사 1000건에 대한 테스트 결과를 토대로 문장간의 관계, 문서의 구조에서 요약 정보 추출에 사용되는 정보를 분석하였다. 본 텍스트 이해 모형은 단어 빈도수에 의존하는 통계적 모델과 비교해 볼 때, 단어 간의 관련성을 찾아내고, 문서구조정보에 기반한 주제문 추출 및 문장간의 관계를 효과적으로 사용함으로서 정보를 생성한다. 그리고 텍스트 이해 과정에서 사용되는 요약 지식과 구조 분석정보의 상관관계를 체계적으로 연결함으로서 자동정보 추출에서 야기되는 내용적 만족도 문제를 보완한다.

  • PDF

기초 통계량을 이용한 저작자 진위 추론

  • 이근무;이근우
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2001년도 추계학술발표회 논문집
    • /
    • pp.69-73
    • /
    • 2001
  • 이 논문에서 문장특성을 파악하는 방법으로 주로 이용한 것은 특정문자의 출현율이다. 어떤 사람이나 그 글 속에는 자신의 개성이 들어있다. 문장의 길이를 비롯하여 문장의 구조나 어휘량, 유의어 중에서 선호하는 글자, 평서문이나 의문문의 사용, 품사의 사용, 문두나 문말에 오는 글자 등에서 각각의 개성이 드러난다. 그 중에서도 접속사나 조사, 접두어, 접미어 등 상대적으로 의미적인 요소보다는 형식적인 요소에 가까운 영역에서 문장의 특성이 두드러지는 것으로 보고되어 있다, 이런 특징을 이용하여 화랑세기의 저작자의 진위를 추론하고자 한다.

  • PDF