• Title/Summary/Keyword: 문장구역

Search Result 5, Processing Time 0.019 seconds

Smart device based sight translation training system for simultaneous interpreting practice (동시통역 학습을 위한 스마트 단말 기반의 문장구역 훈련 시스템)

  • Pyo, Ji Hye;An, Donghyeok
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.7
    • /
    • pp.759-768
    • /
    • 2018
  • As the number of exchange in various fields between countries increases, the number of international conference increases. Many students study simultaneous interpretation due to the increased demand of simultaneous interpretation. Since simultaneous interpretation requires a lot of learning time, students majoring in translation perform the self learning. The paper based sight translation training system is a representative self learning method, but backtracking decreases the efficiency of self learning and it requires the help of the partner. To improve the learning efficiency, computer based sight translation training system has been proposed. However, since students uses the computer based sight translation training system only in a fixed area due to low mobility of computer, the utilization of the system decreases. In this paper, smart device based sight translation training system has been proposed to increase the utilization of the proposed system. Since smart device has lower computing capabilities than the computer, we have proposed algorithms to deal with the low performance. We implement and evaluate the functionalities of the proposed training system.

Smart device based short-term memory training system for interpretation (스마트 단말에서의 통역용 단기기억력 향상 훈련 시스템)

  • Pyo, Ji Hye;An, Donghyeok
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.3
    • /
    • pp.747-756
    • /
    • 2019
  • Students studying interpretation perform additional study and training in addition to regular class. In simultaneous interpreting and consecutive interpreting, interpreter should memorize speaker's announcement because of different language structure. To improve short-term memory, students perform memory training that requires a pair of students. Therefore, they can not perform self-learning, and therefore, efficiency of studying decreases. To resolve this problem, computer based short-term memory training system has been proposed. Student can perform self-learning by changing words in text to special character in the training system. However, efficiency of studying decreases because computer has low portability. Since the number of words is larger than the number of words to be switched into special character, learning difficulty decreases. To resolve this problem, smart device based short-term memory training system has been proposed. Student can perform smart device based training system without space constraints. Since the proposed training system increases the number of words to be changed into special character, learning difficulty increases. We implemented and evaluated the functionalities of the proposed training system.

A Study on the Visual Attention of Game Broadcast Real-time Review Using Eye Tracking: Focusing on Mobile Platform (아이트래킹을 활용한 개인 게임방송 실시간 댓글의 시각적 주의에 관한 연구: 모바일 플랫폼을 중심으로)

  • Yin, Shuo-Han;Wang, Jin-Nan;Hwang, Mi-Kyung;Lee, Sang-Ho
    • Journal of Digital Convergence
    • /
    • v.20 no.5
    • /
    • pp.733-739
    • /
    • 2022
  • The study investigated the users' functional requirement, degree of acceptance and preference of game broadcast real-time review .Secondly it comparatively analyzed the types and locations of game broadcast real-time review through eye tracking tech. The results show that users have high functional requirements and high acceptance for game broadcast real-time review but their preference has no significant correlation with the feature. Among the types of game broadcast real-time review the type with translucent text bubble took the highest visual attention. The above shows that the users' visual behavior has the tendency of special style. The visual attention analysis results of different types and locations of game broadcast real-time review in the study can play a guiding role in the interface design of real-time review feature in the future.

Water Budget Analysis of Four big river basin based on K-WEAP (K-WEAP을 이용한 4대 권역별 물 수지 분석)

  • Moon, Jang-Won;Choi, Si-Jung;Lee, Dong-Ryul;Yoon, Seok-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1362-1366
    • /
    • 2006
  • 우리나라에서는 하천법 제11조에 의거하여 10년마다 한 번씩 수자원장기종합계획을 수립하고 있으며, 필요에 따라 5년마다 이를 수정 보완하고 있다. 2001년 7월 수자원장기종합계획(Water Vision 2020)이 수립된 이후 잦은 봄 가뭄 등 이수측면에서의 사회, 경제, 환경의 변화와 최근 이상홍수 등으로 인한 대규모 홍수피해 발생에 따른 치수측면의 종합적인 대책의 제시가 요구되면서 2001년 수립된 계획에 대한 보완 필요성이 제기되었다. 또한 수자원계획의 신뢰성에 대한 시민단체 등의 문제제기와 지역 차원의 수자원계획 및 수자원환경에 대한 국민적 관심 증대로 인해 계획 수립 과정과 결과에 대한 국민적인 공감대 형성을 위한 체제의 구축이 금번 보완 계획의 수립을 통해 추진되고 있다. 금번 수자원장기종합계획 보완은 투명성 확보라는 큰 목표를 가지고 수행되고 있으며, 이를 통해 국가 수자원 관리의 청사진을 제시하고 물 수급 전망 및 용수수급 계획을 수립하는 과정에 있다. 기 개발된 한국형 통합수자원평가계획 모형인 K-WEAP 모형을 보완 계획 수립 과정에서 활용하고 있으며, K-WEAP 모형을 통해 물 수지 분석을 수행하여 수급 균형을 판단함으로써 일반 대중에게 물 수급 관련 상황에 대한 이해력을 높일 수 있다는 장점을 확보할 수 있다. 본 연구에서는 K-WEAP 모형을 이용하여 각 권역별로 2003년의 물 수급 현황을 분석하여 이를 하천의 관측유량과 비교해봄으로써 모형의 검증을 수행하였으며, 각 권역에서 시나리오별로 추정된 용수수요량을 이용하여 물 수지 분석을 수행함으로써 목표연도별 물 수급 분석결과를 제시하였다. 물 수급 분석 시 지하수 및 농업용 저수지 등 하천과 다목적댐 이외의 지역 공급원에 대해서도 고려하였으며, 이를 통해 수자원계획 수립 시 도움이 될 수 있는 기초적인 자료를 제공할 수 있었다. 인공순환에 의한 저감효과가 크지는 않을 것으로 예측된다. 조사 기간중 H호의 현존 식물플랑크톤량의 $60%{\sim}87%$가 수심 10m 이내에 분포하였고, 녹조강과 남조강이 우점하는 하절기에는 5m 이내에 주로 분포하였다. 취수탑 지점의 수심이 연중 $25{\sim}35m$를 유지하는 H호의 경우 간헐식 폭기장치를 가동하는 기간은 물론 그 외 기간에도 취수구의 심도를 표층 10m 이하로 유지 할 경우 전체 조류 유입량을 60% 이상 저감할 수 있을 것으로 조사되었다.심볼 및 색채 디자인 등의 작업이 수반되어야 하며, 이들을 고려한 인터넷용 GIS기본도를 신규 제작한다. 상습침수지구와 관련된 각종 GIS데이타와 각 기관이 보유하고 있는 공공정보 가운데 공간정보와 연계되어야 하는 자료를 인터넷 GIS를 이용하여 효율적으로 관리하기 위해서는 단계별 구축전략이 필요하다. 따라서 본 논문에서는 인터넷 GIS를 이용하여 상습침수구역관련 정보를 검색, 처리 및 분석할 수 있는 상습침수 구역 종합정보화 시스템을 구축토록 하였다.N, 항목에서 보 상류가 높게 나타났으나, 철거되지 않은 검전보나 안양대교보에 비해 그 차이가 크지 않은 것으로 나타났다.의 기상변화가 자발성 기흉 발생에 영향을 미친다고 추론할 수 있었다. 향후 본 연구에서 추론된 기상변화와 기흉 발생과의 인과관계를 확인하고 좀 더 구체화하기 위한 연구가 필요할 것이다.게 이루어질 수 있을 것으로 기대된다.는 초과수익률이 상승하지만, 이후로는 감소하므로, 반전거래전략을 활용하는 경우 주식투자기간은 24개월이하의 중단기가 적합함을 발견하였다. 이상의 행태적 측면과 투자성과측면의 실증결과를 통하여 한국주식시장에 있어서 시장수익률을 평균적으로 초과할 수 있는 거래전략은 존재하므로 이러한 전략을 개발 및 활용할 수 있으며, 특히, 한국주

  • PDF

Customer Behavior Prediction of Binary Classification Model Using Unstructured Information and Convolution Neural Network: The Case of Online Storefront (비정형 정보와 CNN 기법을 활용한 이진 분류 모델의 고객 행태 예측: 전자상거래 사례를 중심으로)

  • Kim, Seungsoo;Kim, Jongwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.221-241
    • /
    • 2018
  • Deep learning is getting attention recently. The deep learning technique which had been applied in competitions of the International Conference on Image Recognition Technology(ILSVR) and AlphaGo is Convolution Neural Network(CNN). CNN is characterized in that the input image is divided into small sections to recognize the partial features and combine them to recognize as a whole. Deep learning technologies are expected to bring a lot of changes in our lives, but until now, its applications have been limited to image recognition and natural language processing. The use of deep learning techniques for business problems is still an early research stage. If their performance is proved, they can be applied to traditional business problems such as future marketing response prediction, fraud transaction detection, bankruptcy prediction, and so on. So, it is a very meaningful experiment to diagnose the possibility of solving business problems using deep learning technologies based on the case of online shopping companies which have big data, are relatively easy to identify customer behavior and has high utilization values. Especially, in online shopping companies, the competition environment is rapidly changing and becoming more intense. Therefore, analysis of customer behavior for maximizing profit is becoming more and more important for online shopping companies. In this study, we propose 'CNN model of Heterogeneous Information Integration' using CNN as a way to improve the predictive power of customer behavior in online shopping enterprises. In order to propose a model that optimizes the performance, which is a model that learns from the convolution neural network of the multi-layer perceptron structure by combining structured and unstructured information, this model uses 'heterogeneous information integration', 'unstructured information vector conversion', 'multi-layer perceptron design', and evaluate the performance of each architecture, and confirm the proposed model based on the results. In addition, the target variables for predicting customer behavior are defined as six binary classification problems: re-purchaser, churn, frequent shopper, frequent refund shopper, high amount shopper, high discount shopper. In order to verify the usefulness of the proposed model, we conducted experiments using actual data of domestic specific online shopping company. This experiment uses actual transactions, customers, and VOC data of specific online shopping company in Korea. Data extraction criteria are defined for 47,947 customers who registered at least one VOC in January 2011 (1 month). The customer profiles of these customers, as well as a total of 19 months of trading data from September 2010 to March 2012, and VOCs posted for a month are used. The experiment of this study is divided into two stages. In the first step, we evaluate three architectures that affect the performance of the proposed model and select optimal parameters. We evaluate the performance with the proposed model. Experimental results show that the proposed model, which combines both structured and unstructured information, is superior compared to NBC(Naïve Bayes classification), SVM(Support vector machine), and ANN(Artificial neural network). Therefore, it is significant that the use of unstructured information contributes to predict customer behavior, and that CNN can be applied to solve business problems as well as image recognition and natural language processing problems. It can be confirmed through experiments that CNN is more effective in understanding and interpreting the meaning of context in text VOC data. And it is significant that the empirical research based on the actual data of the e-commerce company can extract very meaningful information from the VOC data written in the text format directly by the customer in the prediction of the customer behavior. Finally, through various experiments, it is possible to say that the proposed model provides useful information for the future research related to the parameter selection and its performance.