• Title/Summary/Keyword: 문장간 긴밀도

Search Result 5, Processing Time 0.017 seconds

Korean Summarization System using Automatic Paragraphing (단락 자동 구분을 이용한 문서 요약 시스템)

  • 김계성;이현주;이상조
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.7_8
    • /
    • pp.681-686
    • /
    • 2003
  • In this paper, we describes a system that extracts important sentences from Korean newspaper articles using automatic paragraphing. First, we detect repeated words between sentences. Through observation of the repeated words, this system compute Closeness Degree between Sentences(CDS ) from the degree of morphological agreement and the change of grammatical role. And then, it automatically divides a document into meaningful paragraphs using the number of paragraph defined by the user´s need. Finally. it selects one representative sentence from each paragraph and it generates summary using representative sentences. Though our system doesn´t utilize some features such as title, sentence position, rhetorical structure, etc., it is able to extract meaningful sentences to be included in the summary.

Setences Extraction System using Automatic Division of Paragraph (단락 자동 구분을 통한 중요 문자 추출)

  • 김계성;이현주;정영규;서연경;손기준;이상조
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2000.06a
    • /
    • pp.233-237
    • /
    • 2000
  • 본 논문은 단락의 자동 구분을 통한 중요 문장 추출 시스템을 제안한다. 먼저 어휘의 재출현 여부와 어휘의 일치도, 어휘의 역할 변화를 파악하여 재출현 어휘에 대한 양상을 분석하고 이를 통하여 문장 간의 긴밀도를 정량적으로 계산한다. 다음으로 측정된 문장 간 긴밀도를 이용하여 사용자의 추출 범위에 따라 단락을 구분하고, 각 단락의 대표 문장을 선정하여 최종 요약문을 생성한다. 제안한 방법은 문서 제목, 문장의 위치, 수사 구조 등의 정보를 이용하지 않으며, 단순히 어휘의 출현 빈도만을 이용하던 기존의 통계적인 방법보다 질높은 요약문을 생성할 수 있다. 또한 제안한 방법론은 본 논문이 대상으로 삼고 있는 신문기사의 영역뿐만 아니라 다른 영역으로의 적용이 가능하다.

  • PDF

Setences Extraction System using Automatic Division of Paragraph (단락 자동 구분을 통한 중요 문장 추출)

  • Kim, Kye-Sung;Lee, Hyun-Ju;Jung, Young-Giu;Seo, Youn-Kyoung;Son, Ki-Jun;Lee, Sang-Jo
    • Annual Conference on Human and Language Technology
    • /
    • 2000.10d
    • /
    • pp.233-237
    • /
    • 2000
  • 본 논문은 단락의 자동 구분을 통한 중요 문장 추출 시스템을 제안한다. 먼저 어휘의 재출현 여부와 어휘의 일치도, 어휘의 역할 변화를 파악하여 재출현 어휘에 대한 양상을 분석하고 이를 통하여 문장 간의 긴밀도를 정량적으로 계산한다. 다음으로 측정된 문장 간 긴밀도룰 이용하여 사용자의 추출 범위에 따라 단락을 구분하고, 각 단락의 대표 문장을 선정하여 최종문을 생성한다. 제안한 방법은 문서 제목, 문장의 위치, 수사 구조 등의 정보를 이용하지 않으며, 단순히 어휘의 출현 빈도만을 이용하던 기존의 통계적인 방법보다 질 높은 요약문을 생성할 수 있다. 또한 제안한 방법론은 본 논문이 대상으로 삼고 있는 신문기사의 영역뿐만 아니라 다른 영역으로의 적용이 가능하다.

  • PDF

Abductive Rules for Text Cohesion (글의 응집성을 포착하기 위한 개연규칙)

  • Kim Gon;Yang Jae-Gun;Kim Min-Chan;Bae Jae-Hak
    • Annual Conference of KIPS
    • /
    • 2004.11a
    • /
    • pp.517-520
    • /
    • 2004
  • 본 논문에서는 글의 응집성을 포착하기 위하여 개연규칙을 활용한다. 개연규칙은 문장 구성성분들의 문장간 개연적 연결상황을 나타내고, 글의 인과 성향이나 담화작용을 반영한다. 글을 이해하기 위한 대표적인 속성에는 글에 긴밀성을 부여하는 응집성이 있다. 글의 응집성을 파악하기 위한 대표적인 언어학적 도구나 지식으로는 어휘사슬을 들 수 있다. 이에 본 논문에서는 주어진 예문의 어휘사슬을 개연규칙으로 찾아낸 개연사슬과 비교해 보았다. 그 결과, 중요도가 높은 어휘사슬과 대응하는 개연사슬을 발견할 수 있었다. 개연사슬은 종래의 어휘사슬의 기능을 포함할 뿐만 아니라, 줄거리 단위, 단서구 용법, 문장사이의 개연성 등을 감지하여 문장간의 의미적 연관성을 포착할 수 있다. 이는 개연규칙을 활용하여 글의 화제문을 효과적으로 선별할 수 있음을 보인다.

  • PDF

Serialization of Verbs wi th Activity/Unaccusativity (행위성/비대격성 동사의 연쇄)

  • Kim, Choong-Myoung;Lee, Chung-Min
    • Annual Conference on Human and Language Technology
    • /
    • 1995.10a
    • /
    • pp.290-296
    • /
    • 1995
  • 본고는 한국어에 나타나는 동사의 연쇄현상(serialization in verbals)에 있어서 단일절(mono-clausal)내에서 소위 복합동사(compound verb)라 불리는 일련의 동사들의 결합 현상을 고찰한다. 연결사(linker/connective)를 매개로 서로 결합하는 동사 연쇄증에는, 일반적으로 동사하나가 하나의 사건을 나타내는데 비해 2개 이상의 동사가 배열됨에도 동시에 일어나 묶여질 수 있는 하나의 사건(single event)을 지칭하는 동사부류가 존재하는데, 이를 통해 동사 결합간 긴밀성을 우선적으로 유추할 수 있고, 역으로 통사적 현상에 의해 그 긴밀성이 확인된다는 점에서 문장 접속의 통어적 구성과는 다른 문법범주 형성을 뒷받침하는 개념적 근거가 된다. 여기에서는, 이러한 연속동사구성(연쇄동사)에 있어 행위성/비대격성을 지니는 동사들간의 연쇄현상을 제약하는 여러 원인들을 검토하고 아울러 이들의 의미적 범주선택을 고려한 거르개로서의 생성여과 규약을 제안한다.

  • PDF