• Title/Summary/Keyword: 문자 임베딩

Search Result 24, Processing Time 0.021 seconds

A Convergence Study of the Research Trends on Stress Urinary Incontinence using Word Embedding (워드임베딩을 활용한 복압성 요실금 관련 연구 동향에 관한 융합 연구)

  • Kim, Jun-Hee;Ahn, Sun-Hee;Gwak, Gyeong-Tae;Weon, Young-Soo;Yoo, Hwa-Ik
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.8
    • /
    • pp.1-11
    • /
    • 2021
  • The purpose of this study was to analyze the trends and characteristics of 'stress urinary incontinence' research through word frequency analysis, and their relationships were modeled using word embedding. Abstract data of 9,868 papers containing abstracts in PubMed's MEDLINE were extracted using a Python program. Then, through frequency analysis, 10 keywords were selected according to the high frequency. The similarity of words related to keywords was analyzed by Word2Vec machine learning algorithm. The locations and distances of words were visualized using the t-SNE technique, and the groups were classified and analyzed. The number of studies related to stress urinary incontinence has increased rapidly since the 1980s. The keywords used most frequently in the abstract of the paper were 'woman', 'urethra', and 'surgery'. Through Word2Vec modeling, words such as 'female', 'urge', and 'symptom' were among the words that showed the highest relevance to the keywords in the study on stress urinary incontinence. In addition, through the t-SNE technique, keywords and related words could be classified into three groups focusing on symptoms, anatomical characteristics, and surgical interventions of stress urinary incontinence. This study is the first to examine trends in stress urinary incontinence-related studies using the keyword frequency analysis and word embedding of the abstract. The results of this study can be used as a basis for future researchers to select the subject and direction of the research field related to stress urinary incontinence.

Detection of System Abnormal State by Cyber Attack (사이버 공격에 의한 시스템 이상상태 탐지 기법)

  • Yoon, Yeo-jeong;Jung, You-jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.5
    • /
    • pp.1027-1037
    • /
    • 2019
  • Conventional cyber-attack detection solutions are generally based on signature-based or malicious behavior analysis so that have had difficulty in detecting unknown method-based attacks. Since the various information occurring all the time reflects the state of the system, by modeling it in a steady state and detecting an abnormal state, an unknown attack can be detected. Since a variety of system information occurs in a string form, word embedding, ie, techniques for converting strings into vectors preserving their order and semantics, can be used for modeling and detection. Novelty Detection, which is a technique for detecting a small number of abnormal data in a plurality of normal data, can be performed in order to detect an abnormal condition. This paper proposes a method to detect system anomaly by cyber attack using embedding and novelty detection.

Design and Implementation of a Keyboard Input Security System for Safe md Trusted E-Commerce (안전하고 신뢰성있는 전자상거래를 위한 키보드 입력 보안 시스템의 설계 및 구현)

  • Choi Sung-Wook;Kim Ki-Tae
    • The KIPS Transactions:PartC
    • /
    • v.13C no.1 s.104
    • /
    • pp.55-62
    • /
    • 2006
  • It is growing to use the E-Commerce, recently However, if a cracking tool that detects e keyboard input is set up, users' input values and personal information could be taken away. This paper shows the design and implementation of security system that prevent the keyboard input information leaking. The ideas of thus paper are encrypting the keyboard input values with using the keyboard interrupt hooking, the browser embedding program's decrypting the values in case of need and decrypting all values in the web server. The own input control was developed for direct attacks to the browser, and that the values of password fields which are showed as *(asterisk character) won't be decrypted in the client PC is different from other commercial keyboard input security systems. Consequently, this paper shows the chance of realizing a lot safer customer information protective system than before.

Constructing for Korean Traditional culture Corpus and Development of Named Entity Recognition Model using Bi-LSTM-CNN-CRFs (한국 전통문화 말뭉치구축 및 Bi-LSTM-CNN-CRF를 활용한 전통문화 개체명 인식 모델 개발)

  • Kim, GyeongMin;Kim, Kuekyeng;Jo, Jaechoon;Lim, HeuiSeok
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.12
    • /
    • pp.47-52
    • /
    • 2018
  • Named Entity Recognition is a system that extracts entity names such as Persons(PS), Locations(LC), and Organizations(OG) that can have a unique meaning from a document and determines the categories of extracted entity names. Recently, Bi-LSTM-CRF, which is a combination of CRF using the transition probability between output data from LSTM-based Bi-LSTM model considering forward and backward directions of input data, showed excellent performance in the study of object name recognition using deep-learning, and it has a good performance on the efficient embedding vector creation by character and word unit and the model using CNN and LSTM. In this research, we describe the Bi-LSTM-CNN-CRF model that enhances the features of the Korean named entity recognition system and propose a method for constructing the traditional culture corpus. We also present the results of learning the constructed corpus with the feature augmentation model for the recognition of Korean object names.