• Title/Summary/Keyword: 문자 영역 탐색

Search Result 25, Processing Time 0.028 seconds

Nonlinear Character Segmentation and Recognition Using Topographic Features in Hangul String Images (한글 문자열 영상의 지형적 특징을 이용한 비선형 문자 분할 및 인식)

  • Lee, Dong-June;Lee, Seong-Whan
    • Annual Conference on Human and Language Technology
    • /
    • 1994.11a
    • /
    • pp.201-206
    • /
    • 1994
  • 문서 인식 시스템의 성능을 저하시키는 가장 큰 원인 중의 하나로 문자 분할 오류를 들 수 있는데 보다 우수한 성능의 문서 인식 시스템 개발을 위해서는 정확한 문자 분할 방법이 절실히 요구된다. 기존의 문자 분할에 관한 연구들은 이진 영상을 대상으로 함으로써 접촉되거나 겹치는 문자의 경계 부분에서 문자 분할에 유용한 정보들을 잃어 문자 분할 오류를 초래할 수 있다. 하지만 명도 영상을 분석해 보면 문자의 접촉 부분에서 주로 나타나는 지형적 특징이 있으며, 문자 경계에서 명도값이 변하는 것을 관찰할 수 있는데 이와같은 명도 영상의 정보를 사용하면 보다 효과적으로 문자를 분할할 수 있을 것으로 판단된다. 본 연구에서는 이러한 점에 착안하여 명도 영상으로부터 지형적 특징을 추출하고 다단계 그래프 탐색 방법을 이용하여 명도값을 추적함으로써 비선형 문자 경계를 찾는 새로운 문자 분할 방법을 제안한다. 제안된 방법은 명도 문자열 영상을 입력으로 받아 명도 영상의 투영값과 명도 영상으로부터 추출된 지형적 특성을 이용하여 문자 분할 영역을 결정하고 문자 분할 영역내에서 다단계 그래프 탐색에 의한 비선형 문자 분할 경로를 찾는다. 그리고 문자 인식기와 결항하여 최종 문자 분할 위치를 확정하는 인식 결과를 이용한 문자 분할을 수행함으로써 문자 분할 위치 및 문자 인식 결과를 확정한다. 다양한 문서에 대한 실험 결과 제안된 방법이 이진 정보만을 사용하는 방법보다 접촉 혹은 겹친 문자 분할에 매우 효과적임을 알 수 있었다.

  • PDF

Vehicle number detection using histogram and probability (히스토그램과 확률을 이용한 차량 번호 검출 방법)

  • Kim, HyoYeon;Jung, DoWook;Choi, HyungIl
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2015.05a
    • /
    • pp.307-308
    • /
    • 2015
  • 자동차 번호판의 문자를 검출하기 위한 과정 중 그림자가 있는 후면 번호판을 이진화하는 방법을 제안한다. 대부분의 경우 차량구조에 의한 그림자 발생이 문자를 검출하는데 오류를 발생시킨다. 이를 해결하기 위해 그림자 영역과 아닌 영역의 경계를 검출해야 한다. 하지만, 기존 방법은 히스토그램에서 세 개의 영역사이에 있는 임계값 2개를 수동으로 결정해야 되는 점과 현재번호판의 색상인 흰색 바탕에 검은 문자에 적용하면 문자 영역의 그림자 경계선 검출이 모호하다는 단점이 있다. 본 논문에서는 이 문제를 해결하기 위하여 슬라이딩 윈도우를 이용한 히스토그램과 탐색하는 픽셀의 좌, 우 픽셀들을 스캔하여 연결되지 않은 에지를 찾아 그림자 경계선 에지를 연결하는 방법을 제안한다.

  • PDF

Design and Implementation of Virtual Network Search System for Segmentation of Unconstrained Handwritten Hangul (무제약 필기체 한글 분할을 위한 가상 네트워크 탐색 시스템의 설계 및 구현)

  • Park Sung-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.5
    • /
    • pp.651-659
    • /
    • 2005
  • For segmentation of constrained and handwritten Hangul, a new method, which has been not introduced, was proposed and implemented to use virtual network search system in the space between characters. The proposed system was designed to be used in all cases in unconstrained handwritten Hangul by various writers and to make a number of curved segmentation path using a virtual network to the space between characters. The proposed system prevented Process from generating a path in a wrong position by changing search window upon target block within a search process. From the experimental results, the proposed virtual network search system showed segmentation accuracy of $91.4\%$ from 800 word set including touched and overlapped characters collected from various writers.

  • PDF

Text Region Extraction and OCR on Camera Based Images (카메라 영상 위에서의 문자 영역 추출 및 OCR)

  • Shin, Hyun-Kyung
    • The KIPS Transactions:PartD
    • /
    • v.17D no.1
    • /
    • pp.59-66
    • /
    • 2010
  • Traditional OCR engines are designed to the scanned documents in calibrated environment. Three dimensional perspective distortion and smooth distortion in images are critical problems caused by un-calibrated devices, e.g. image from smart phones. To meet the growing demand of character recognition of texts embedded in the photos acquired from the non-calibrated hand-held devices, we address the problem in three categorical aspects: rotational invariant method of text region extraction, scale invariant method of text line segmentation, and three dimensional perspective mapping. With the integration of the methods, we developed an OCR for camera-captured images.

An Efficient Text Location using Mean Shift Algorithm (Mean Shift 알고리즘을 이용한 효율적인 문자 추출)

  • Jung, Kee-Chul;Kim, Kwang-In;Han, Jung-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2001.04a
    • /
    • pp.123-126
    • /
    • 2001
  • 영상내의 문자 정보는 색인에 필요한 유용한 정보를 제공하므로, 이를 이용한 멀티미디어 데이터의 인덱싱기법이 최근 많이 연구되고 있다. 본 논문은 mean shift 알고리즘을 이용한 텍스춰 기반의 문자 영역 추출 방법을 제안한다. 다양한 크기와 모양의 문자에 적응성을 가지는 필터를 만들기 위해 신경망을 이용한다. 문자 영역의 위치와 크기는 문자 확률 영상상에서 mean shift 알고리즘을 이용하여, 국소 탐색만으로 별도의 후처리 과정 없이 기존의 문자 추출 방법보다 우수한 성능을 보인다.

  • PDF

A License Plate Detection Method Using Multiple-Color Model and Character Layout Information in Complex Background (다중색상 모델과 문자배치 정보를 이용한 복잡한 배경 영상에서의 자동차 번호판 추출)

  • Kim, Min-Ki
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.11
    • /
    • pp.1515-1524
    • /
    • 2008
  • This paper proposes a method that detects a license plate in complex background using a multiple-color model and character layout information. A layout of a green license plate is different from that of a white license plate. So, this study used a strategy that firstly assumes the plate color and then utilizes its layout information. At first, it extracts green areas from an input image using a multiple-color model which combined HIS and YIQ color models with RGB color model. If green areas are detected, it searches the character layout of the green plate by analyzing the connected components in each areas. If not detected, it searches the character layout of the white plate in all area. Finally, it extracts a license plate by grouping the connected components which corresponds to characters. Experimental result shows that 98.1% of 419 input images are correctly detected. It also shows that the proposed method is robust against illumination, shadow, and weather condition.

  • PDF

Books Location Estimation System by Image Processing (영상처리를 이용한 도서 위치 추정 시스템)

  • Cho Dong-Uk
    • The KIPS Transactions:PartB
    • /
    • v.12B no.1 s.97
    • /
    • pp.17-24
    • /
    • 2005
  • In this paper, we will show that a control search methodology is a alternative method of a sequential search which is difficult in finding books for arrangement at library or a bookstore when books are out of place. To solve the problem of the sequential search, we apply a edge operator and the Hough Transform to boundary of a taken photograph image book. We generate histogram by a projected image from boundary range of selected books and select title areas from this and possible areas which are a character number of title, authors, a publishing company and an array sequence. Finally, we can select the final possible area of a book location by a curve fitting and a regression line extraction, and show utility through experiment.

Odometry Using Strong Features of Recognized Text (인식된 문자의 강한 특징점을 활용하는 측위시스템)

  • Song, Do-hoon;Park, Jong-il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.219-222
    • /
    • 2021
  • 본 논문에서는 시각-관성 측위시스템(Visual-Inertial Odometry, VIO)에서 광학 문자 인식(Optical Character Recognition, OCR)을 활용해 문자의 영역을 찾아내고, 그 위치를 기억해 측위시스템에서 다시 인식되었을 때 비교하기 위해 위치와 특징점을 저장하고자 한다. 먼저, 실시간으로 움직이는 카메라의 영상에서 문자를 찾아내고, 카메라의 상대적인 위치를 이용하여 문자가 인식된 위치와 특징점을 저장하는 방법을 제안한다. 또한 저장된 문자가 다시 탐색되었을 때, 문자가 재인식되었는 지 판별하기 위한 방법을 제안한다. 인공적인 마커나 미리 학습된 객체를 사용하지 않고 상황에 따른 문자를 사용하는 이 방법은 문자가 존재하는 범용적인 공간에서 사용이 가능하다.

  • PDF

A Study on Korean Printed Character Type Classification And Nonlinear Grapheme Segmentation (한글 인쇄체 문자의 형식 분류 및 비선형적 자소 분리에 관한 연구)

  • Park Yong-Min;Kim Do-Hyeon;Cha Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.784-787
    • /
    • 2006
  • In this paper, we propose a method for nonlinear grapheme segmentation in Korean printed character type classification. The characters are subdivided into six types based on character type information. The feature vector is consist of mesh features, vertical projection features and horizontal projection features which are extracted from gray-level images. We classify characters into 6 types using Back propagation. Character segmentation regions are determined based on character type information. Then, an optimal nonlinear grapheme segmentation path is found using multi-stage graph search algorithm. As the result, a proposed methodology is proper to classify character type and to find nonlinear char segmentation paths.

  • PDF

Efficient Text Localization using MLP-based Texture Classification (신경망 기반의 텍스춰 분석을 이용한 효율적인 문자 추출)

  • Jung, Kee-Chul;Kim, Kwang-In;Han, Jung-Hyun
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.3
    • /
    • pp.180-191
    • /
    • 2002
  • We present a new text localization method in images using a multi-layer perceptron(MLP) and a multiple continuously adaptive mean shift (MultiCAMShift) algorithm. An automatically constructed MLP-based texture classifier generates a text probability image for various types of images without an explicit feature extraction. The MultiCAMShift algorithm, which operates on the text probability Image produced by an MLP, can place bounding boxes efficiently without analyzing the texture properties of an entire image.