• Title/Summary/Keyword: 문자영역 추출

Search Result 288, Processing Time 0.023 seconds

A Passport Recognition and face Verification Using Enhanced fuzzy ART Based RBF Network and PCA Algorithm (개선된 퍼지 ART 기반 RBF 네트워크와 PCA 알고리즘을 이용한 여권 인식 및 얼굴 인증)

  • Kim Kwang-Baek
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.1
    • /
    • pp.17-31
    • /
    • 2006
  • In this paper, passport recognition and face verification methods which can automatically recognize passport codes and discriminate forgery passports to improve efficiency and systematic control of immigration management are proposed. Adjusting the slant is very important for recognition of characters and face verification since slanted passport images can bring various unwanted effects to the recognition of individual codes and faces. Therefore, after smearing the passport image, the longest extracted string of characters is selected. The angle adjustment can be conducted by using the slant of the straight and horizontal line that connects the center of thickness between left and right parts of the string. Extracting passport codes is done by Sobel operator, horizontal smearing, and 8-neighborhood contour tracking algorithm. The string of codes can be transformed into binary format by applying repeating binary method to the area of the extracted passport code strings. The string codes are restored by applying CDM mask to the binary string area and individual codes are extracted by 8-neighborhood contour tracking algerian. The proposed RBF network is applied to the middle layer of RBF network by using the fuzzy logic connection operator and proposing the enhanced fuzzy ART algorithm that dynamically controls the vigilance parameter. The face is authenticated by measuring the similarity between the feature vector of the facial image from the passport and feature vector of the facial image from the database that is constructed with PCA algorithm. After several tests using a forged passport and the passport with slanted images, the proposed method was proven to be effective in recognizing passport codes and verifying facial images.

  • PDF

A Study on Alignment Correction Algorithm for Detecting Specific Areas of Video Images (영상 이미지의 특정 영역 검출을 위한 정렬 보정 알고리즘 연구)

  • Jin, Go-Whan
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.9-14
    • /
    • 2018
  • The vision system is a device for acquiring images and analyzing and discriminating inspection areas. Demand for use in the automation process has increased, and the introduction of a vision-based inspection system has emerged as a very important issue. These vision systems are used for everyday life and used as inspection equipment in production processes. Image processing technology is actively being studied. However, there is little research on the area definition for extracting objects such as character recognition or semiconductor packages. In this paper, define a region of interest and perform edge extraction to prevent the user from judging noise as an edge. We propose a noise-robust alignment correction model that can extract the edge of a region to be inspected using the distribution of edges in a specific region even if noise exists in the image. Through the proposed model, it is expected that the product production efficiency will be improved if it is applied to production field such as character recognition of tire or inspection of semiconductor packages.

The Slanted License Plate Extraction Algorithm Using Bimodality (이원 양상을 이용한 기울어진 차량 번호판 영역 추출 알고리즘)

  • Kim, Bo-Eun;Song, Wonseok;Lee, Seung-Rae
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.01a
    • /
    • pp.339-342
    • /
    • 2014
  • 현재 차량의 출입통제 및 주정차 단속 등이 차량 번호판 자동 인식 시스템을 통해 자동화 되고 있다. 본 논문은 촬영 각도에 따라 기울어지거나 왜곡된 번호판에 대해서도 잘 동작하는 번호판 영역 추출 알고리즘을 제안한다. 번호판의 배경과 문자의 밝기 대비가 커서 그 분포가 이원 양상을 보인다는 점을 이용하여 번호판의 중심부와 대략적인 후보 영역을 추출한다. 이후 허프 변환을 통하여 번호판의 네 모서리에 해당하는 직선을 검출한다. 이들 네 직선의 교점이 번호판의 꼭짓점이 된다. 네 꼭짓점의 좌표를 이용하여 왜곡된 번호판을 실제 번호판의 가로와 세로 비율에 맞는 정규화 된 모양으로 변환한다. 차량의 측면 1m~3m 사이의 다양한 거리에서 촬영한 이미지로 실험한 결과 일반적인 실외 조명 아래에서 차체의 색에 관계없이 번호판 영역 추출에 성공하였다.

  • PDF

Recognition of Car License Plates Using Difference Operator and ART2 Algorithm (차 연산과 ART2 알고리즘을 이용한 차량 번호판 통합 인식)

  • Kim, Kwang-Baek;Kim, Seong-Hoon;Woo, Young-Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.11
    • /
    • pp.2277-2282
    • /
    • 2009
  • In this paper, we proposed a new recognition method can be used in application systems using morphological features, difference operators and ART2 algorithm. At first, edges are extracted from an acquired car image by a camera using difference operators and the image of extracted edges is binarized by a block binarization method. In order to extract license plate area, noise areas are eliminated by applying morphological features of new and existing types of license plate to the 8-directional edge tracking algorithm in the binarized image. After the extraction of license plate area, mean binarization and mini-max binarization methods are applied to the extracted license plate area in order to eliminated noises by morphological features of individual elements in the license plate area, and then each character is extracted and combined by Labeling algorithm. The extracted and combined characters(letter and number symbols) are recognized after the learning by ART2 algorithm. In order to evaluate the extraction and recognition performances of the proposed method, 200 vehicle license plate images (100 for green type and 100 for white type) are used for experiment, and the experimental results show the proposed method is effective.

The Extraction of Table Lines and Data in Document Image (문서영상에서 표 구성 직선과 데이터 추출)

  • Jang, Dae-Geun;Kim, Eui-Jeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.3
    • /
    • pp.556-563
    • /
    • 2006
  • We should extract lines and data which consist of the table in order to classify the table region and analyze its structure in document image. But it is difficult to extract lines and data exactly because the lines are cut and their lengths are changed, or characters or noises are merged to the table lines. These problems result from the error of image input device or image reduction. In this paper, we propose the better method of extracting lines and data for table region classification and structure analysis than the previous ones including commercial softwares. The prposed method extracts horizontal and vertical lines which consist of the table by the use of one dimensional median filter. This filter not only eliminates the noises which attach to the line and the lines which are orthogonal to the filtering direction, but also connects the cut line of which the gap is shorter than the length of the filter tap in the process of extracting lines to the filtering direction. Furthermore, texts attached to the line are separated in the process of extracting vertical lines. This is an example of ABSTRACT format.

A Study on Recognition of Car License Plate using Dynamical Thresholding Method and Kohonen Algorithm (동적인 임계화 방법과 코호넨 알고리즘을 이용한 차량 번호판 인식에 관한 연구)

  • 김광백;노영욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.12A
    • /
    • pp.2019-2026
    • /
    • 2001
  • In this paper, we proposed the car license plate extraction and recognition algorithm using both the dynamical thresholding method and the kohonen algorithm. In general, the areas of car license plate in the car images have distinguishing characteristics, such as the differences in intensity between the areas of characters and the background of the plates, the fixed ratio of width to height of the plates, and the higher dynamical thresholded density rate 7han the other areas, etc. Taking advantage of the characteristics, the thresholded images were created from the original images, and also the density rates were computed. A candidate area was selected, whose density rate was corresponding to the properties of the car license plate obtained from the car license plate. The contour tracking method by utilizing the Kohonen algorithm was applied to extract the specific area which included characters and numbers from an extracted plate area. The characters and numbers of the license place were recognized by using Kohonen algorithm. Kohonen algorithm was very effective o? suppressing noises scattered around the contour. In this study, 80 car images were tested. The result indicate that we proposed is superior in performance.

  • PDF

Automatic gasometer reading system using selective optical character recognition (관심 문자열 인식 기술을 이용한 가스계량기 자동 검침 시스템)

  • Lee, Kyohyuk;Kim, Taeyeon;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.1-25
    • /
    • 2020
  • In this paper, we suggest an application system architecture which provides accurate, fast and efficient automatic gasometer reading function. The system captures gasometer image using mobile device camera, transmits the image to a cloud server on top of private LTE network, and analyzes the image to extract character information of device ID and gas usage amount by selective optical character recognition based on deep learning technology. In general, there are many types of character in an image and optical character recognition technology extracts all character information in an image. But some applications need to ignore non-of-interest types of character and only have to focus on some specific types of characters. For an example of the application, automatic gasometer reading system only need to extract device ID and gas usage amount character information from gasometer images to send bill to users. Non-of-interest character strings, such as device type, manufacturer, manufacturing date, specification and etc., are not valuable information to the application. Thus, the application have to analyze point of interest region and specific types of characters to extract valuable information only. We adopted CNN (Convolutional Neural Network) based object detection and CRNN (Convolutional Recurrent Neural Network) technology for selective optical character recognition which only analyze point of interest region for selective character information extraction. We build up 3 neural networks for the application system. The first is a convolutional neural network which detects point of interest region of gas usage amount and device ID information character strings, the second is another convolutional neural network which transforms spatial information of point of interest region to spatial sequential feature vectors, and the third is bi-directional long short term memory network which converts spatial sequential information to character strings using time-series analysis mapping from feature vectors to character strings. In this research, point of interest character strings are device ID and gas usage amount. Device ID consists of 12 arabic character strings and gas usage amount consists of 4 ~ 5 arabic character strings. All system components are implemented in Amazon Web Service Cloud with Intel Zeon E5-2686 v4 CPU and NVidia TESLA V100 GPU. The system architecture adopts master-lave processing structure for efficient and fast parallel processing coping with about 700,000 requests per day. Mobile device captures gasometer image and transmits to master process in AWS cloud. Master process runs on Intel Zeon CPU and pushes reading request from mobile device to an input queue with FIFO (First In First Out) structure. Slave process consists of 3 types of deep neural networks which conduct character recognition process and runs on NVidia GPU module. Slave process is always polling the input queue to get recognition request. If there are some requests from master process in the input queue, slave process converts the image in the input queue to device ID character string, gas usage amount character string and position information of the strings, returns the information to output queue, and switch to idle mode to poll the input queue. Master process gets final information form the output queue and delivers the information to the mobile device. We used total 27,120 gasometer images for training, validation and testing of 3 types of deep neural network. 22,985 images were used for training and validation, 4,135 images were used for testing. We randomly splitted 22,985 images with 8:2 ratio for training and validation respectively for each training epoch. 4,135 test image were categorized into 5 types (Normal, noise, reflex, scale and slant). Normal data is clean image data, noise means image with noise signal, relfex means image with light reflection in gasometer region, scale means images with small object size due to long-distance capturing and slant means images which is not horizontally flat. Final character string recognition accuracies for device ID and gas usage amount of normal data are 0.960 and 0.864 respectively.

An Effective Method for Replacing Caption in Video Images (비디오 자막 문자의 효과적인 교환 방법)

  • Chun Byung-Tae;Kim Sook-Yeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.2 s.34
    • /
    • pp.97-104
    • /
    • 2005
  • Caption texts frequently inserted in a manufactured video image for helping an understanding of the TV audience. In the movies. replacement of the caption texts can be achieved without any loss of an original image, because the caption texts have their own track in the films. To replace the caption texts in early methods. the new texts have been inserted the caption area in the video images, which is filled a certain color for removing established caption texts. However, the use of these methods could be lost the original images in the caption area, so it is a Problematic method to the TV audience. In this Paper, we propose a new method for replacing the caption text after recovering original image in the caption area. In the experiments. the results in the complex images show some distortion after recovering original images, but most results show a good caption text with the recovered image. As such, this new method is effectively demonstrated to replace the caption texts in video images.

  • PDF

A Study on Korean Printed Character Type Classification And Nonlinear Grapheme Segmentation (한글 인쇄체 문자의 형식 분류 및 비선형적 자소 분리에 관한 연구)

  • Park Yong-Min;Kim Do-Hyeon;Cha Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.784-787
    • /
    • 2006
  • In this paper, we propose a method for nonlinear grapheme segmentation in Korean printed character type classification. The characters are subdivided into six types based on character type information. The feature vector is consist of mesh features, vertical projection features and horizontal projection features which are extracted from gray-level images. We classify characters into 6 types using Back propagation. Character segmentation regions are determined based on character type information. Then, an optimal nonlinear grapheme segmentation path is found using multi-stage graph search algorithm. As the result, a proposed methodology is proper to classify character type and to find nonlinear char segmentation paths.

  • PDF

A Car License Plate Recognition Using Colors Information, Morphological Characteristic and Neural Network (컬러 정보 및 형태학적 특징과 신경망을 이용한 차량 번호판 인식)

  • Cho, Jae-Hyun;Yang, Hwang-Kyu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.3
    • /
    • pp.304-308
    • /
    • 2010
  • In this paper, we propose a new method of recognizing the vehicle license plate using color space, morphological characteristics and ART2 algorithm. Morphological characteristics of old and/or new style vehicle license plate among the candidate regions are applied to remove noise areas using 8-directional contour tracking algorithm, then follow by the extraction of vehicle plate. From the extracted license plate area, plate morphological characteristics of each region are removed. After that, labeling algorithm to extract the individual characters are then combined. The classified individual character and numeric codes are applied to the ART2 algorithm for the learning and recognition. In order to evaluate the performance of our proposed extraction and recognition of vehicle license method, we have run experiments on 100 green plates and white plates. Experimental results shown that the proposed license plate extraction and recognition method was effective.