• Title/Summary/Keyword: 문서 자동분류

Search Result 311, Processing Time 0.025 seconds

Text Categorization Based on Terminology and Information Extraction (전문용어 및 정보추출에 기반한 문서분류시스템)

  • Lee, Kyung-Soon;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10e
    • /
    • pp.79-84
    • /
    • 1999
  • 본 연구에서는 문서분류시스템에서 자질의 표현으로 전문분야사전을 이용한 분야정보와 개체정보추출을 통한 개체정보를 이용한다. 또한 지식정보를 보완하기 위해 통계적인 방법으로 범주 전문용어를 인식하여 자질로 표현하는 방법을 제안한다. 문서에 나타난 용어들이 어떤 특정 전문분야에 속하는 용어들이 많이 나타나는 경우 그 문서는 용어들이 속한 분야의 문서일 가능성이 높다. 또한, 정보추출을 통해 용어가 어떠한 개체를 나타내는지를 인식하여 문서를 표현함으로써 문서가 내포하는 의미를 보다 잘 반영할 수 있게 된다. 분야정보나 개체정보를 알 수 없는 용어에 대해서는 학습문서로부터 전문분야를 자동 인식함으로써 문서표현의 지식정보를 보완한다. 전문분야, 개체정보 및 범주전문용어에 기반해서 표현된 문서의 자질에 대해서 지지벡터기계 학습에 기반한 문서분류기틀 이용하여 각 범주에 대해 이진분류를 하였다. 제안된 문서자질표현은 용어기반의 자질표현에 비해 좋은 성능을 보이고 있다.

  • PDF

Study on Automatic Classification System of News based on NewsML (NewsML 기반의 뉴스 자동 분류 시스템에 관한 연구)

  • Tak-Hee Lee;Gumwon Hong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.619-622
    • /
    • 2008
  • 뉴스 분류 체계는 각각의 기사에 정치, 경제, 사회 등 가장 적합한 주제별로 분류하는 것으로 언론사별 분류 체계는 통일성이 없이 전혀 다르게 구성되어 사용하고 있다. 이로 인해 방대한 콘텐트를 통합하는데 많은 어려움이 있으며, 그만큼 시스템과 인력에 대해 중복 투자가 되고 있다. 이런 문제점을 개선하기 위해 국제 표준인 NewsML에 기반한 뉴스 분류에 대해 제안한다. NewsML은 XML 기반의 유연성과 확장성이 있는 구조적인 표준 형식으로 다양한 데이터 표현이 가능하여 자동 문서 범주화에 필요한 중요한 자질 선택이 가능하다. 본 논문에서는 NewsML 형식으로 되어 있는 뉴스와 그렇지 않은 뉴스를 구분하여 자동 분류에 대한 비교 실험을 한다. NewsML의 구조화된 정보를 활용한 실험이 뉴스의 제목과 본문만으로 실험한 결과보다 좋은 성능을 보여 주었으며, 그 중에서 자질 공간이 아주 큰 경우에 유용하고 문서 분류에 효과가 뛰어난 지지 벡터 기계 모델이 가장 좋은 성능을 보였다.

Automatic Text Categorization Model by Synonym Dictionary (유사어 사전을 이용한 자동범주화 모델 개발)

  • Kim, Qu-Hwan;Lee, Too-Young
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2004.08a
    • /
    • pp.167-172
    • /
    • 2004
  • 기존의 문서분류는 학습문서에 출현하는 자질에 대해 가중치를 계산하여 그 순위에 따라 상위 자질로 구성된 지식베이스를 사용하였다. 그리고 새로운 문서가 들어왔을 때 자질 지식베이스를 근거로 새 문서를 색인하였다. 결국 자질 지식베이스와 정확히 일치하지 않는 키워드는 색인대상에서 제외되는 문제가 있었다. 본 고에서는 이 문제를 해결하기 위하여 분류될 문서의 특징을 나타내는 범주별 자질과 유사한의미를 가지나 형태가 변형되어 기술된 단어에 대하여 유사어 사전을 구축하였으며 이를 통해 새로운 문서가 범주에 할당될 가능성을 높여 자동 문서 범주화 시스템의 성능을 향상시키고자 한다.

  • PDF

Hierarchical Automatic Classification of News Articles based on Association Rules (연관규칙을 이용한 뉴스기사의 계층적 자동분류기법)

  • Joo, Kil-Hong;Shin, Eun-Young;Lee, Joo-Il;Lee, Won-Suk
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.6
    • /
    • pp.730-741
    • /
    • 2011
  • With the development of the internet and computer technology, the amount of information through the internet is increasing rapidly and it is managed in document form. For this reason, the research into the method to manage for a large amount of document in an effective way is necessary. The conventional document categorization method used only the keywords of related documents for document classification. However, this paper proposed keyword extraction method of based on association rule. This method extracts a set of related keywords which are involved in document's category and classifies representative keyword by using the classification rule proposed in this paper. In addition, this paper proposed the preprocessing method for efficient keywords creation and predicted the new document's category. We can design the classifier and measure the performance throughout the experiment to increase the profile's classification performance. When predicting the category, substituting all the classification rules one by one is the major reason to decrease the process performance in a profile. Finally, this paper suggested automatically categorizing plan which can be applied to hierarchical category architecture, extended from simple category architecture.

Design distributed document classifier based on SVM using Web Services (웹서비스를 이용한 SVM기반 분산 문서분류기 설계)

  • Kim Yong-Soo;Park Young B.
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.11a
    • /
    • pp.501-504
    • /
    • 2004
  • 인터넷이 발달하면서 인터넷 상에서 공유 문서를 효율적으로 분류하기 위한 자동 분류의 필요성이 높아지고 있다. 또한 인터넷은 단순한 문서 제공의 한계를 넘어 어플리케이션간의 통합연동을 위한 기술이 대두되고 있다. 이러한 관점에서 본 논문은 새롭게 제시되고 있는 웹서비스를 이용하여 SVM 기반의 분류기를 분산 구성하여 설계하였고, 문서로부터 추출된 특성단어 벡터정보를 이용하여 SVM 학습 후 각각의 분류기를 통하여 분산 문서 분류를 수행한다. 특성단어 벡터는 $TF^{\ast}IDF$에 기반한 특성 표현법을 사용하였으며, 분류 범주 별로 SVM 기반의 분류기 모델 데이터를 생성하기 위해 특성 단어 사전을 구축하여 분류 기준으로 구성하였다.

  • PDF

Design of Automatic Document Classifier for IT documents based on SVM (SVM을 이용한 디렉토리 기반 기술정보 문서 자동 분류시스템 설계)

  • Kang, Yun-Hee;Park, Young-B.
    • Journal of IKEEE
    • /
    • v.8 no.2 s.15
    • /
    • pp.186-194
    • /
    • 2004
  • Due to the exponential growth of information on the internet, it is getting difficult to find and organize relevant informations. To reduce heavy overload of accesses to information, automatic text classification for handling enormous documents is necessary. In this paper, we describe structure and implementation of a document classification system for web documents. We utilize SVM for documentation classification model that is constructed based on training set and its representative terms in a directory. In our system, SVM is trained and is used for document classification by using word set that is extracted from information and communication related web documents. In addition, we use vector-space model in order to represent characteristics based on TFiDF and training data consists of positive and negative classes that are represented by using characteristic set with weight. Experiments show the results of categorization and the correlation of vector length.

  • PDF

Automatic Text Categorization Using Hybrid Multiple Model Schemes (하이브리드 다중모델 학습기법을 이용한 자동 문서 분류)

  • 명순희;김인철
    • Journal of the Korean Society for information Management
    • /
    • v.19 no.4
    • /
    • pp.35-51
    • /
    • 2002
  • Inductive learning and classification techniques have been employed in various research and applications that organize textual data to solve the problem of information access. In this study, we develop hybrid model combination methods which incorporate the concepts and techniques for multiple modeling algorithms to improve the accuracy of text classification, and conduct experiments to evaluate the performances of proposed schemes. Boosted stacking, one of the extended stacking schemes proposed in this study yields higher accuracy relative to the conventional model combination methods and single classifiers.

Pre-processing for IPC Classification of Patent Documents (특허문서의 IPC 분류를 위한 데이터 변환 및 통합)

  • Su-Hyun Park;Jin Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.367-368
    • /
    • 2023
  • 4차 산업혁명으로 다양한 기술과 아이디어가 생겨나고 있고, 이를 보호하기 위한 특허는 그 등록 건수가 매년 증가하는 추세이다. 그러나 현재 특허문서를 분류하는 과정을 수동으로 진행하고 있기에 이를 자동으로 진행할 수 있는 분류기를 생성할 필요를 느꼈고, 본 논문에서는 특허문서를 분류기에 적용할 데이터의 전처리 과정 중 데이터 변환과 통합 과정을 다루었다.

Accelerating the EM Algorithm through Selective Sampling for Naive Bayes Text Classifier (나이브베이즈 문서분류시스템을 위한 선택적샘플링 기반 EM 가속 알고리즘)

  • Chang Jae-Young;Kim Han-Joon
    • The KIPS Transactions:PartD
    • /
    • v.13D no.3 s.106
    • /
    • pp.369-376
    • /
    • 2006
  • This paper presents a new method of significantly improving conventional Bayesian statistical text classifier by incorporating accelerated EM(Expectation Maximization) algorithm. EM algorithm experiences a slow convergence and performance degrade in its iterative process, especially when real online-textual documents do not follow EM's assumptions. In this study, we propose a new accelerated EM algorithm with uncertainty-based selective sampling, which is simple yet has a fast convergence speed and allow to estimate a more accurate classification model on Naive Bayesian text classifier. Experiments using the popular Reuters-21578 document collection showed that the proposed algorithm effectively improves classification accuracy.

Analytical Study of Fuzzy Clustering Technique for Automatic Term Classification (용어 자동분류를 위한 퍼지 클러스터링 기법 분석)

  • 한승희
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2003.08a
    • /
    • pp.95-103
    • /
    • 2003
  • 목차 및 권말색인과 같은 인쇄형태의 정보내용에 대한 구조화된 접근방식에서 착안하여 전자 문서의 내용에 대한 새로운 형태의 접근방식을 개발할 수 있는데, 이를 위한 방안으로 용어 자동분류 기법이 있다. 본 연구에서는 용어의 의미모호성 문제를 해결하는 동시에 용어간 계층관계 표현이 가능한 자동분류 기법으로 퍼지 클러스터링 기법을 제안하고, 대표적인 퍼지 클러스터링 알고리즘인 퍼지 c-means 기법에 대해 분석하고자 한다.

  • PDF