• 제목/요약/키워드: 문서처리시스템

검색결과 1,387건 처리시간 0.028초

계층 구조를 고려한 Jena Plug-in 저장소의 평가를 위한 실험 및 시뮬레이션 (Experiment and Simulation for Evaluation of Jena Storage Plug-in Considering Hierarchical Structure)

  • 신희영;정동원;백두권
    • 한국시뮬레이션학회논문지
    • /
    • 제17권2호
    • /
    • pp.31-47
    • /
    • 2008
  • W3C에서 표준 온톨로지 서술 언어로 OWL을 채택함에 따라 많은 온톨로지들이 OWL로 기술 및 구현되고 있다. 이와 관련된 기술 중 Jena는 HP에서 개발한 API로서 저장소는 물론 추론 엔진을 개발할 수 있는 다양한 API를 제공하고 있으며 현재 많은 시스템 개발에 이용되고 있다. 그러나 Jena2의 저장 모델은 단일 테이블에 문서의 정보를 저장하기 때문에 대용량의 온톨로지 데이터 처리에 있어 성능이 저하되는 문제점을 지닌다. 무엇보다 클래스와 프로퍼티의 계층적 구조를 고려하지 않기 때문에 계층 구조를 이용한 질의 처리 시 잦은 조인 연산으로 인해 성능이 급격하게 저하된다. 따라서 본 논문에서는 이러한 문제점들을 해결하기 위해 기존의 Jena2 API를 그대로 이용하면서 Plug-in 형식으로 적용할 수 있는 새로운 OWL 온톨로지 관계형 데이터베이스 모델을 제안한다. 제안 모델은 클래스(Class), 프로퍼티(Property), 인스턴스(Instance)의 정보들을 의미적으로 분류하여 저장하며 계층적 정보들에 대해서도 개별적으로 관리함으로써 질의 처리 성능을 향상시킨다. 또한 기존모델과 이 논문에서 제안하는 모델과의 실험 및 시뮬레이션을 통해 비교 분석 한다. 실험 및 시뮬레이션 결과에서, 제안 시스템이 Jena2보다 나은 성능을 보였다.

  • PDF

신뢰성있는 딥러닝 기반 분석 모델을 참조하기 위한 딥러닝 기술 언어 (Deep Learning Description Language for Referring to Analysis Model Based on Trusted Deep Learning)

  • 문종혁;김도형;최종선;최재영
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권4호
    • /
    • pp.133-142
    • /
    • 2021
  • 최근 딥러닝은 하드웨어 성능이 향상됨에 따라 자연어 처리, 영상 인식 등의 다양한 기술에 접목되어 활용되고 있다. 이러한 기술들을 활용해 지능형 교통 시스템(ITS), 스마트홈, 헬스케어 등의 산업분야에서 데이터를 분석하여 고속도로 속도위반 차량 검출, 에너지 사용량 제어, 응급상황 등과 같은 고품질의 서비스를 제공하며, 고품질의 서비스를 제공하기 위해서는 정확도가 향상된 딥러닝 모델이 적용되어야 한다. 이를 위해 서비스 환경의 데이터를 분석하기 위한 딥러닝 모델을 개발할 때, 개발자는 신뢰성이 검증된 최신의 딥러닝 모델을 적용할 수 있어야 한다. 이는 개발자가 참조하는 딥러닝 모델에 적용된 학습 데이터셋의 정확도를 측정하여 검증할 수 있다. 이러한 검증을 위해서 개발자는 학습 데이터셋, 딥러닝의 계층구조 및 개발 환경 등과 같은 내용을 포함하는 딥러닝 모델을 문서화하여 적용하기 위한 구조적인 정보가 필요하다. 본 논문에서는 신뢰성있는 딥러닝 기반 데이터 분석 모델을 참조하기 위한 딥러닝 기술 언어를 제안한다. 제안하는 기술 언어는 신뢰성 있는 딥러닝 모델을 개발하는데 필요한 학습데이터셋, 개발 환경 및 설정 등의 정보와 더불어 딥러닝 모델의 계층구조를 표현할 수 있다. 제안하는 딥러닝 기술 언어를 이용하여 개발자는 지능형 교통 시스템에서 참조하는 분석 모델의 정확도를 검증할 수 있다. 실험에서는 제안하는 언어의 유효성을 검증하기 위해, 번호판 인식 모델을 중심으로 딥러닝 기술 문서의 적용과정을 보인다.

시간의 단위별 처리를 이용한 자동화된 한국어 시간 표현 인식 및 정규화 시스템 (Automatic Recognition and Normalization System of Korean Time Expression using the individual time units)

  • 선충녕;강상우;서정연
    • 인지과학
    • /
    • 제21권4호
    • /
    • pp.447-458
    • /
    • 2010
  • 시간 정보는 문서나 문장 등에서 매우 중요한 정보로 사용되기 때문에 다양한 종류의 데이터에서 시간 정보의 인식은 매우 중요하다. 시간 정보는 일정한 형태를 가진 것으로 간주되지만 실제 사용되는 시간 표현은 매우 다양하고 복잡하며 정보의 일부가 빈번하게 생략되는 경우가 발생한다. 본 연구에서는 시간 표현의 추출뿐만 아니라 추출된 표현을 정규화된 표준 형식으로 변환하는 범용 시간 표현 추출 및 변환 시스템을 제안한다. 다양한 시간 표현의 추출과 변환에 필요한 노력을 줄이고 새로운 데이터에 대한 확장성을 보장하기 위해 기본 시간 단위를 정의하였다. 추출단계에서는 기본 시간 단위의 조합으로 구성된 사전을 사용하여 가능한 시간 표현들을 추출한다. 정규화 변환 단계에서는 인접 추출 정보와 기준 시간 등을 사용하여 생략된 기본 시간 단위 정보를 복원하고 최종적으로 모든 기본 시간 정보들은 통합되어 정규화된 표준 형식으로 변환된다. 제안한 시스템은 모바일 기기 등의 잡음 환경에서 강인한 성능을 보장하며 영역이나 언어에 대해 독립적이므로 많은 영역에서 응용이 가능하다. 본 연구는 실험에서 다량의 오류가 포함된 SMS 데이터에서 시간 표현 추출 정확도 93.8%, 시간 표현 변환 정확율 93.2%을 보임으로써 오류에 강인하면서도 높은 성능을 유지함을 증명하였다.

  • PDF

정보검색시스템에서 조인 시퀀스 분리성 기반 논리곱 불리언 질의 최적화 (Conjunctive Boolean Query Optimization based on Join Sequence Separability in Information Retrieval Systems)

  • 박병권;한욱신;황규영
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제31권4호
    • /
    • pp.395-408
    • /
    • 2004
  • 논리곱 불리언 질의는 질의에 포함된 키워드들이 모두 나타나는 텍스트 문서들을 검색하는질의로서, 정보검색 시스템에서 가장 널리 사용되는 질의이다. 논리곱 불리언 질의는 검색의 정확도를 높이기 위하여 많은 수의 키워드로 구성된 긴 질의를 사용한다. 이 경우. 키워드 처리 순서가 성능에 크게 영향을 미친다. 기존 정보검색시스템에서는 휴리스틱에 의존하여 키워드 처리 순서를 결정하므로 최적을 보장하지 못한다. 동적 프로그래밍과 같은 기존의 데이타베이스 질의 최적화 알고리즘은 복잡도가 지수적으로 증가하므로(Ο(n2$^{n-1}$)), 키워드 수가 많은 논리곱 불리언 질의에는 적합하지 않다. 본 논문에서는 조인시퀀스 분리성이라는 새로운 개념에 기반한 논리곱 불리언 질의 최적화 알고리즘을 제안한다. 조인 시퀀스 분리성이란 조인에 참여하는 릴레이션들이 어떤 조건을 만족할 경우, 최적 조인 시퀀스가 두 개의 서브 시퀀스로 분리된다는 성질이다. 이 성질을 활용하면 Ο(nlogn)만에 최적 조인 시퀀스를 구할 수 있다. 본 논문에서는 이러한 조인 시퀀스 분리성의 개념을 정형적으로 정의하고 이에 기반한 질의 최적화 알고리즘의 최적성을 이론적으로 증명한다. 그리고, 제안한 질의 최적화 알고리즘의 성능 평가를 위해, 비용 모델을 사용하여 다양한 시뮬레이션을 수행한다. 그 결과, 제안한 알고리즘의 성능이 기존의 휴리스틱 기반 질의 최적화 알고리즘들에 비해 100배 이상 우수함을 보인다. 또한, 동적 프로그래밍 알고리즘에 비해 질의 최적화 시간 면에서 기하 급수적으로 우수함을 보인다(키워드 개수가 10 개일 경우 600배 이상 우수함).

행정업무시스템의 생산성 및 효과 분석: 나라장터 중심으로 (Analysis of the Productivity and Effects of Administration Information System: Focused on KONEPS(Korea Online E-Procurement System))

  • 김훈희;오창석
    • 한국전자거래학회지
    • /
    • 제22권2호
    • /
    • pp.123-136
    • /
    • 2017
  • 정보시스템(IS)에 대한 평가분석 방법은 시스템관점, 이용자관점, 경영관점에서 연구되고 있다. 세부 방법으로는 이용자 설문이나 전문가의 의견에 의한 정성적 평가를 수행한다. 본 연구에서는 평가분석 항목 중 행정업무시스템의 구축으로 얻어지는 생산성과 효과를 측정하였다. 기존 연구에서 정성적인 생산성 평가와 범용적인 효과지표를 제시하는 것과 달리 정량적인 생산성과 행정민원에 특화된 지표를 선정하였다. 대표적인 행정업무시스템인 나라장터를 대상으로 전자계약 실적과 중간과정에 기록된 정보를 이용하여 소요일수로 환산하고, 투입 인력에 따른 생산성을 산정하였다. 효과분석은 행정업무시스템의 목표인 민원관련 설문을 분석하였다. 기록된 정보에는 계약문서작성, 공문서처리, 전화통화량을 업무활동 요인으로 선정하였다. 설문항목에는 민원대응을 위한 수행영향, 업무편의, 목표달성 여부를 설문으로 조사하였다. 각 요인을 반영적 구조변수와 형성적 구성변수로 구분하고 내적일관성(internal consistency)과 다중공선성(Multi-collinearity)을 진단하였다. 기술통계법에 따른 신뢰도 검증, 회귀분석을 통한 영향도 측정하고 다중회귀모델 경로계수로 모델을 분석하였다. 모델을 검증하기 위해 구조적방정식에서 활용하는 다중 확인적 요인분석(CFA)에 따라 Chi-square, RMR, GFI, AGFI, NFI, CFI 분석을 수행한다.

공공기관의 생산현황통보에 관한 연구 (A Study on the Records Production Report of Public Institutions)

  • 황진현
    • 기록학연구
    • /
    • 제37호
    • /
    • pp.145-188
    • /
    • 2013
  • 생산현황통보는 국내 기록관리의 주요 성과이자 특징으로, 전 세계적으로 유례를 찾아보기 힘든 한국적 기능이다. 1999년 "공공기관의 기록물 관리에 관한 법률" 제정 당시, 법률에 생산현황통보 제도를 포함시키기 위한 여러 노력이 있었고, 2006년 법률개정 이후에도 여전히 그 기능이 존재하고 있다. 그러나 생산현황통보에 대한 시스템, 서식 등의 업무적 지원이 미비할 뿐만 아니라, 형식적인 기능으로 변질되고 있는 실정이다. 이에 본 연구에서는 생산현황통보 제도의 제정목적과 함께 현재 실무 현황 및 업무지원을 위한 시사점을 도출하고자 한다. 우선 생산현황통보 제도 전반을 이해하고, 취지와 목적을 확인하기 위해 법률 제정 관계자와 생산현황통보제도를 집행하는 영구기록물관리기관 관계자와의 면담하였다. 제도를 실무 현장에서 수행하고 있는 현장의 기록물관리 전문요원과의 면담도 수행하였다. 이를 통해 생산현황보고에 대한 전문가 집단의 견해와 함께 상호간의 의견 차이를 확인하였고, 시스템을 통한 실무지원이 가능하도록 현재의 기능을 평가하고, 향후 개선점을 제안하였다.

연관 규칙과 협력적 여과 방식을 이용한 추천 시스템 (Recommender System using Association Rule and Collaborative Filtering)

  • 이기현;고병진;조근식
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2002년도 춘계학술대회 논문집
    • /
    • pp.265-272
    • /
    • 2002
  • 기존의 인터넷 웹사이트에서는 사용자의 만족을 극대화시키기 위하여 사용자별로 개인화 된 서비스를 제공하는 협력적 필터링 방식을 적용하고 있다 협력적 여과 기술은 비슷한 선호도를 가지는 사용자들과의 상관관계를 기반으로 취향에 맞는 아이템을 예측하여 특정 사용자에게 추천하여준다. 그러나 협력적 필터링은 추천을 받기 위해서 특정 수 이상의 아이템에 대한 평가를 요구하며, 또한 전체 사용자에 대해 단지 비슷한 선호도를 가지는 일부 사용자 정보에 의지하여 추천함으로써 나머지 사용자 정보를 무시하는 경향이 있다. 그러나 나머지 사용자 정보에도 추천을 위한 유용한 정보가 숨겨져 있다. 우리는 이러한 숨겨진 유용한 추천 정보를 발견하기 위하여 본 논문에서는 협력적 여과 방식과 함께 데이터 마이닝(Data Mining)에서 사용되는 연관 규칙(Association Rule)을 추천에 사용한다. 연관 규칙은 한 항목 그룹과 다른 항목 그룹 사이에 존재하는 연관성을 규칙(Rule)의 형태로 표현한 것이다. 이와 같이 생성된 연관 규칙은 개인 구매도 분석, 상품의 교차 매매(Cross-Marketing), 카탈로그 디자인, 염가 매출품(Loss Leader)분석, 상품 진열, 구매 성향에 따른 고객 분류 다양하게 사용되고 있다. 그러나 이런 연관 규칙은 추천 시스템에서 잘 응용되지 못하고 있는 실정이다. 본 논문에서 우리는 연관 규칙을 추천 시스템에 적용해, 항목 그룹 사이에 연관성을 유도함으로써 추천에 효율적으로 사용할 수 있음을 보였다. 즉 전체 사용자의 히스토리(History) 정보를 기반으로 아이템 사이의 연관 규칙을 유도하고 협력적 여과 방식과 함께 보조적으로 연관 규칙을 추천을 위해 사용함으로써 추천 시스템에 효율성을 높였다. 구축, 각종 전자문서 생성, 전자 결제, 온라인 보험 가입, 해운 선용품 판매 및 관련 정보 제공 등 해운 거래를 위한 종합적인 서비스가 제공되어야 한다. 이를 위해, 본문에서는 e-Marketplace의 효율적인 연계 방안에 대해 해운 관련 업종별로 제시하고 있다. 리스트 제공형, 중개형, 협력형, 보완형, 정보 연계형 등이 있는데, 이는 해운 분야에서 사이버 해운 거래가 가지는 문제점들을 보완하고 업종간 협업체제를 이루어 원활한 거래를 유도할 것이다. 그리하여 우리나라가 동북아 지역뿐만 아니라 세계적인 해운 국가 및 물류 ·정보 중심지로 성장할 수 있는 여건을 구축하는데 기여할 것이다. 나타내었다.약 1주일간의 포르말린 고정이 끝난 소장 및 대장을 부위별, 별 종양개수 및 분포를 자동영상분석기(Kontron Co. Ltd., Germany)로 분석하였다. 체의 변화, 장기무게, 사료소비량 및 마리당 종양의 개수에 대한 통계학적 유의성 검증을 위하여 Duncan's t-test로 통계처리 하였고, 종양 발생빈도에 대하여는 Likelihood ration Chi-square test로 유의성을 검증하였다. C57BL/6J-Apc$^{min/+}$계 수컷 이형접합체 형질전환 마우스에 AIN-76A 정제사료만을 투여한 대조군의 대장선종의 발생률은 84%(Group 3; 21/25례)로써 I3C 100ppm 및 300ppm을 투여한 경우에 있어서는 각군 모두 60%(Group 1; 12/20 례, Group 2; 15/25 례)로 감소하는 경향을 나타내었다. 대장선종의 마리당 발생개수에 있어서는 C57BL/6J-Apc$^{min/+}$계 수컷 이형접합체 형질전환 마우스에 AIN-76A 정제사료

  • PDF

HBase에 대한 디지털 포렌식 조사 기법 연구 (Digital Forensic Investigation of HBase)

  • 박아란;정두원;이상진
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제6권2호
    • /
    • pp.95-104
    • /
    • 2017
  • 최근 스마트 기기의 발전과 소셜 네트워크 서비스(SNS)의 대중화로 기존 관계형 데이터베이스(RDBMS)에서는 처리하기 어려운 데이터들이 증가하고 있다. 이러한 대용량의 비정형 데이터를 실시간으로 처리하기 위한 대안으로 비관계형 데이터베이스(NoSQL DBMS)가 각광 받고 있다. 데이터베이스 디지털 포렌식 조사 기법은 대부분 관계형 데이터베이스를 대상으로 연구되어왔으나, 최근 NoSQL DBMS를 도입하는 기업이 증가하면서 NoSQL DBMS에 대한 디지털 포렌식 기법의 수요도 증가하고 있다. NoSQL DBMS는 정규화할 스키마가 존재하지 않고, 데이터베이스 종류나 운영환경에 따라 저장방식이 상이하기 때문에 디지털 포렌식 조사 시 이를 고려한 새로운 기법들이 필요하다. NoSQL DBMS 중 문서형 데이터베이스에 대한 연구는 진행되어 왔지만, 이를 다른 종류의 NoSQL DBMS에 그대로 적용하기엔 한계가 있다. 이에 본 논문에서는 NoSQL DBMS 중 컬럼형 데이터베이스인 HBase의 구동 방식과 데이터 모델을 소개하고, 운영환경 파악과 아티팩트 수집 및 분석, 삭제된 데이터의 복구 방안에 대해 제안하여 이를 바탕으로 HBase에 대한 디지털 포렌식 조사 기법에 대해 연구하였다. 또한 실험 시나리오를 통해 제안된 HBase에 대한 디지털 포렌식 조사 기법을 검증한다.

SSNO 기반 시공간 시맨틱 센서 웹 (Spatio-Temporal Semantic Sensor Web based on SSNO)

  • 신인수;김수정;김정준;한기준
    • Spatial Information Research
    • /
    • 제22권5호
    • /
    • pp.9-18
    • /
    • 2014
  • 유비쿼터스 컴퓨팅 환경이 발전함에 따라 GeoSensor와 같이 GPS 기능을 보유한 센서로부터 생성된 시공간 센서 데이터 활용이 증가하고 있으며, 시공간 센서 데이터를 사용해 사용자에게 다양한 서비스를 효율적으로 제공해주기 위한 시맨틱 센서 웹이 연구되고 있다. 특히, W3C에서는 OGC의 SWE(Sensor Web Enablement)와 같은 센서 관련 표준들을 활용하고, 센서 데이터를 온톨로지로 표현할 수 있는 SSNO(Semantic Sensor Network Ontology)를 개발하였다. 그러나 이러한 연구들은 비시공간 센서 데이터에 대한 질의 처리는 가능하지만 시간과 공간 정보를 포함하는 시공간 센서 데이터를 효율적으로 처리하기 어렵다는 문제점이 존재한다. 따라서, 본 논문에서는 OGC의 "OpenGIS Simple Feature Specification for SQL"에서 제시한 공간 데이터 타입과 공간 연산자를 확장하여 시공간 데이터 타입과 시공간 연산자를 지원하는 SSNO 기반의 시공간 시맨틱 센서 웹을 개발하였다. SSNO 기반의 시공간 시맨틱 센서 웹은 시공간 센서 데이터인 SensorML(Sensor Model Language)과 O&M(Observations and Measurements) 스키마를 분석하여 SSNO 문서로 변환 및 저장하고, 시공간 연산자와 시공간 추론 규칙을 적용하여 효율적인 질의 처리를 수행한다. 마지막으로, 이러한 SSNO 기반의 시공간 시맨틱 센서 웹을 가상 시나리오에 적용해 봄으로써 본 시스템의 효용성을 검증하였다.

자가 생성 지도 학습 알고리즘을 이용한 컨테이너 식별자 인식

  • 김재용;박충식;김광백
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2005년도 공동추계학술대회
    • /
    • pp.500-506
    • /
    • 2005
  • 본 논문에서는 자가 생성 지도 학습 알고리즘을 이용한 운송 컨테이너 식별자 인식 시스템을 제안한다. 일반적으로 운송 컨테이너의 식별자들은 글자의 색이 검정색 또는 흰색으로 이루어져 있는 특정이 있다. 이러한 특성을 고려하여 원 컨테이너 영상에 대해 검은색과 흰색을 제외하고는 모든 부분을 잡음으로 처리하기 위해 퍼지 추론 방법을 이용하여 식별자 영역과 바탕영역을 구별한다. 식별자 영역으로 구분 된 영역은 그대로 두고, 바탕 영역으로 구분된 영역 은 전체 영상의 평균 픽셀 값으로 대체시킨다. 그리고 Sobel 마스크를 이용하여 에지를 검출하고, 추출된 에지를 이용하여 수직 블록과 수평 블록을 검출 하여 컨테이너의 식별자 영역을 추출하고 이진화한다. 이진화 된 식별자 영역에 대해 검정색의 빈도수를 이용하여 흰바탕과 민바탕을 구분하고 4 방향 윤곽선 추적 알고리즘을 적용하여 개별 식별자를 추출 한다. 개별 식별자 인식을 위해 자가 생성 지도 학습 알고리즘을 제안하여 개별 식별자 인식에 적용한다. 제안된 자가 생성 지도 학습 알고리즘은 입력층과 은닉층 사이의 구조를 ART-l을 개선하여 적용하고 은닉층과 출력층 사이에는 일반화된 델타 학습 방법과 Delta-bar-Delta 알고리즘을 적용하여 학습 및 인식 성능을 개선한다. 실제 80 개의 컨테이너 영상을 대상으로 실험한 결과, 제안된 식별자 추출 방법이 이전의 개별 추출 방법보다 추출률이 개선되었고 FCM 기반 자가 생성 지도 학습 알고리즘보다 제안된 자가 생성 지도 학습 알고리즘이 컨테이너 식별자의 학습 및 인식에 있어서 개선된 것을 확인하였다.색 문제를 해결하고자 하는 것이 연구의 목적이다. 정보추출은 사용자의 관심사에 적합한 문서들로부터 어떤 구체적인 사실이나 관계를 정확히 추출하는 작업을 가리킨다.앞으로 e-메일, 매신저, 전자결재, 지식관리시스템, 인터넷 방송 시스템의 기반 구조 역할을 할 수 있다. 현재 오픈웨어에 적용하기 위한 P2P 기반의 지능형 BPM(Business Process Management)에 관한 연구와 X인터넷 기술을 이용한 RIA (Rich Internet Application) 기반 웹인터페이스 연구를 진행하고 있다.태도와 유아의 창의성간에는 상관이 없는 것으로 나타났고, 일반 유아의 아버지 양육태도와 유아의 창의성간의 상관에서는 아버지 양육태도의 성취-비성취 요인에서와 창의성제목의 추상성요인에서 상관이 있는 것으로 나타났다. 따라서 창의성이 높은 아동의 아버지의 양육태도는 일반 유아의 아버지와 보다 더 애정적이며 자율성이 높지만 창의성이 높은 아동의 집단내에서 창의성에 특별한 영향을 더 미치는 아버지의 양육방식은 발견되지 않았다. 반면 일반 유아의 경우 아버지의 성취지향성이 낮을 때 자녀의 창의성을 향상시킬 수 있는 것으로 나타났다. 이상에서 자녀의 창의성을 향상시키는 중요한 양육차원은 애정성이나 비성취지향성으로 나타나고 있어 정서적인 측면의 지원인 것으로 밝혀졌다.징에서 나타나는 AD-SR맥락의 반성적 탐구가 자주 나타났다. 반성적 탐구 척도 두 그룹을 비교 했을 때 CON 상호작용의 특징이 낮게 나타나는 N그룹이 양적으로 그리고 내용적으로 더 의미 있는 반성적 탐구를 했다용을 지원하는 홈페이지를 만들어 자료

  • PDF