• Title/Summary/Keyword: 문서은닉

Search Result 29, Processing Time 0.036 seconds

Steganography Algorithm Using Stochastic Duration Diffusion (확률적 확산을 이용한 문서은닉 알고리즘)

  • Rhee, Keun-Moo
    • Annual Conference of KIPS
    • /
    • 2013.05a
    • /
    • pp.530-533
    • /
    • 2013
  • 본 연구에서는 음악연주 정보를 기록하는 SMF (Standard MIDI File) 대한 정보 하이딩을 스테가노그래피의 관점에서 재고 해 보았다. 그 결과 그 중 SMF 데이터 스트림에 메시지를 은닉 하는 방법이 주로 이용되어 왔다. 연주 정보 통제 방법은 포함할 수 정보량의 증대가 어렵다는 문제가 있었다. 이 보고서는 기존 방식과는 다른 성분인 듀레이션의 확률적 확산을 이용해 정보를 은닉하는 SMF 스테가노그래피를 제안한다.

Learning Model for Recommendation of Humor Documents (은닉 변수 모델을 이용한 문서 추천)

  • 이종우;장병탁
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.11a
    • /
    • pp.514-519
    • /
    • 2002
  • 우리는 유머문서의 추천을 위해서 문서 정보, 사용자 정보, 공통 등급매김 정보 등을 모두 이용하는 4 개의 관찰 변수와 이들간 관계의 학습을 위한 은닉변수를 사용한 확률모델을 구축하였다. 이 모델은 학습된 은닉 변수와 가시 변수 간의 관계를 통해 누락 관찰 데이터에 대해서도 추정값을 유도해 낼 수 있으므로 등급매김 정보가 부족하거나 새로운 사용자와 문서의 도입시에 안정적인 추천 성능을 보여 줄 수가 있다. 또한 확률 모델의 학습을 위해서 EMl 알고리즘을 이용하였는데 저평가된 데이터의 이용도를 높이기 위해서 추천을 반대하는 확률 모델을 따로 두고 이들간에 분류모델(classification model)을 두어서 추정값을 분류해내는 방식을 취한다.

  • PDF

An effective detection method for hiding data in compound-document files (복합문서 파일에 은닉된 데이터 탐지 기법에 대한 연구)

  • Kim, EunKwang;Jeon, SangJun;Han, JaeHyeok;Lee, MinWook;Lee, Sangjin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.6
    • /
    • pp.1485-1494
    • /
    • 2015
  • Traditionally, data hiding has been done mainly in such a way that insert the data into the large-capacity multimedia files. However, the document files of the previous versions of Microsoft Office 2003 have been used as cover files as their structure are so similar to a File System that it is easy to hide data in them. If you open a compound-document file which has a secret message hidden in it with MS Office application, it is hard for users who don't know whether a secret message is hidden in the compound-document file to detect the secret message. This paper presents an analysis of Compound-File Binary Format features exploited in order to hide data and algorithms to detect the data hidden with these exploits. Studying methods used to hide data in unused area, unallocated area, reserved area and inserted streams led us to develop an algorithm to aid in the detection and examination of hidden data.

Estimation of Document Similarity using Semantic Kernel Derived from Helmholtz Machines (헬름홀츠머신 학습 기반의 의미 커널을 이용한 문서 유사도 측정)

  • 장정호;김유섭;장병탁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.440-442
    • /
    • 2003
  • 문서 집합 내의 개념 또는 의미 관계의 자동 분석은 보다 효율적인 정보 획득과 단어수준 이상의 개념 수준에서의 운서 비교를 가능하게 한다. 본 논문에서는 은닉변수모델을 이용하여 문서 집합으로부터 단어들 간의 의미관계를 자동적으로 추출하고 이를 통해 문서간 유사도 측정을 효과적으로 하기 위한 방안을 제시한다. 은닉변수 모델로는 다중요인모델의 학습이 용이한 헬름홀츠 머신을 활용하묘 이의 학습 결과에 기반하여, 문서간 비교를 한 의미 커널(semantic kernel)을 구축한다. 2개의 문서 집합 HEDLINE과 CACM 데이터에 대한 검색 실험에서, 제안된 기법을 적응함으로써 기본 VSM(Vector Space Model) 에 비해 20% 이상의 평균 정확도 향상을 이를 수 있었다.

  • PDF

An Automatic Summarization of Call-For-Paper Documents Using a 2-Phase hidden Markov Model (2단계 은닉 마코프 모델을 이용한 논문 모집 공고의 자동 요약)

  • Kim, Jeong-Hyun;Park, Seong-Bae;Lee, Sang-Jo;Park, Se-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.2
    • /
    • pp.243-250
    • /
    • 2008
  • This paper proposes a system which extracts necessary information from call-for-paper (CFP) documents using a hidden Markov model (HMM). Even though a CFP does not follow a strict form, there is, in general, a relatively-fixed sequence of information within most CFPs. Therefore, a hiden Markov model is adopted to analyze CFPs which has an advantage of processing consecutive data. However, when CFPs are intuitively modeled with a hidden Markov model, a problem arises that the boundaries of the information are not recognized accurately. In order to solve this problem, this paper proposes a two-phrase hidden Markov model. In the first step, the P-HMM (Phrase hidden Markov model) which models a document with phrases recognizes CFP documents locally. Then, the D-HMM (Document hidden Markov model) grasps the overall structure and information flow of the document. The experiments over 400 CFP documents grathered on Web result in 0.49 of F-score. This performance implies 0.15 of F-measure improvement over the HMM which is intuitively modeled.

Improved Data Concealing and Detecting Methods for OOXML Document (OOXML 문서에 대한 향상된 데이터 은닉 및 탐지 방법)

  • Hong, Kiwon;Cho, Jaehyung;Kim, Soram;Kim, Jongsung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.3
    • /
    • pp.489-499
    • /
    • 2017
  • MS office is a office software which is widely used in the world. The OOXML format has been applied to the document structure from MS office 2007 to the newest version. In this regard, the method of data concealing, which is a representative anti-forensic act has been researched and developed, so the method of detecting concealed data is very important to the digital forensic investigation. In this paper, we present an improved data concealing method bypassing the previewers detecting methods for OOXML formatted MS office documents. In addition, we show concealment of the internal data like sheets and slides for MS office 2013 Excel and PowerPoint, and suggest an improved detecting algorithm against this data concealing.

Topographic Non-negative Matrix Factorization for Topic Visualization from Text Documents (Topographic non-negative matrix factorization에 기반한 텍스트 문서로부터의 토픽 가시화)

  • Chang, Jeong-Ho;Eom, Jae-Hong;Zhang, Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10b
    • /
    • pp.324-329
    • /
    • 2006
  • Non-negative matrix factorization(NMF) 기법은 음이 아닌 값으로 구성된 데이터를 두 종류의 양의 행렬의 곱의 형식으로 분할하는 데이터 분석기법으로서, 텍스트마이닝, 바이오인포매틱스, 멀티미디어 데이터 분석 등에 활용되었다. 본 연구에서는 기본 NMF 기법에 기반하여 텍스트 문서로부터 토픽을 추출하고 동시에 이를 가시적으로 도시하기 위한 Topographic NMF (TNMF) 기법을 제안한다. TNMF에 의한 토픽 가시화는 데이터를 전체적인 관점에서 보다 직관적으로 파악하는데 도움이 될 수 있다. TNMF는 생성모델 관점에서 볼 때, 2개의 은닉층을 갖는 계층적 모델로 표현할 수 있으며, 상위 은닉층에서 하위 은닉층으로의 연결은 토픽공간상에서 토픽간의 전이확률 또는 이웃함수를 정의한다. TNMF에서의 학습은 전이확률값의 연속적 스케줄링 과정 속에서 반복적 파리미터 갱신 과정을 통해 학습이 이루어지는데, 파라미터 갱신은 기본 NMF 기반 학습 과정으로부터 유사한 형태로 유도될 수 있음을 보인다. 추가적으로 Probabilistic LSA에 기초한 토픽 가시화 기법 및 희소(sparse)한 해(解) 도출을 목적으로 한 non-smooth NMF 기법과의 연관성을 분석, 제시한다. NIPS 학회 논문 데이터에 대한 실험을 통해 제안된 방법론이 문서 내에 내재된 토픽들을 효과적으로 가시화 할 수 있음을 제시한다.

  • PDF

Document classification using a deep neural network in text mining (텍스트 마이닝에서 심층 신경망을 이용한 문서 분류)

  • Lee, Bo-Hui;Lee, Su-Jin;Choi, Yong-Seok
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.5
    • /
    • pp.615-625
    • /
    • 2020
  • The document-term frequency matrix is a term extracted from documents in which the group information exists in text mining. In this study, we generated the document-term frequency matrix for document classification according to research field. We applied the traditional term weighting function term frequency-inverse document frequency (TF-IDF) to the generated document-term frequency matrix. In addition, we applied term frequency-inverse gravity moment (TF-IGM). We also generated a document-keyword weighted matrix by extracting keywords to improve the document classification accuracy. Based on the keywords matrix extracted, we classify documents using a deep neural network. In order to find the optimal model in the deep neural network, the accuracy of document classification was verified by changing the number of hidden layers and hidden nodes. Consequently, the model with eight hidden layers showed the highest accuracy and all TF-IGM document classification accuracy (according to parameter changes) were higher than TF-IDF. In addition, the deep neural network was confirmed to have better accuracy than the support vector machine. Therefore, we propose a method to apply TF-IGM and a deep neural network in the document classification.

Multiple Cause Model-based Topic Extraction and Semantic Kernel Construction from Text Documents (다중요인모델에 기반한 텍스트 문서에서의 토픽 추출 및 의미 커널 구축)

  • 장정호;장병탁
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.5
    • /
    • pp.595-604
    • /
    • 2004
  • Automatic analysis of concepts or semantic relations from text documents enables not only an efficient acquisition of relevant information, but also a comparison of documents in the concept level. We present a multiple cause model-based approach to text analysis, where latent topics are automatically extracted from document sets and similarity between documents is measured by semantic kernels constructed from the extracted topics. In our approach, a document is assumed to be generated by various combinations of underlying topics. A topic is defined by a set of words that are related to the same topic or cooccur frequently within a document. In a network representing a multiple-cause model, each topic is identified by a group of words having high connection weights from a latent node. In order to facilitate teaming and inferences in multiple-cause models, some approximation methods are required and we utilize an approximation by Helmholtz machines. In an experiment on TDT-2 data set, we extract sets of meaningful words where each set contains some theme-specific terms. Using semantic kernels constructed from latent topics extracted by multiple cause models, we also achieve significant improvements over the basic vector space model in terms of retrieval effectiveness.

Simple Image Stenography Technology for Large Scale Text (대용량 텍스트를 위한 손실 없는 영상 은닉기술)

  • Rhee, Keun-Moo
    • Annual Conference of KIPS
    • /
    • 2008.05a
    • /
    • pp.1104-1107
    • /
    • 2008
  • These people where generally the image or the document nik technique silver document image, against the digital data of audio back all type the research is advanced being used with objective and the use which are various, is a d. Needs a low-end leveling instrument security text from the research which it sees and with substitution quantity the silver nik being simple it will be able to deliver the technique which is simple it embodied. It combined the text image first and the nose which is in the collar image of 24 bit depth which will reach ting it did and it rehabilitatedded and a higher officer technique and the result it used that the loss ratio of the text image to analyze is slight it was ascertained.