• Title/Summary/Keyword: 문맥 표현

검색결과 177건 처리시간 0.024초

문맥 표현과 음절 표현 기반 포인터 네트워크를 이용한 한국어 상호참조해결 (Contextualized Embedding- and Character Embedding-based Pointer Network for Korean Coreference Resolution)

  • 박천음;이창기;류지희;김현기
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.239-242
    • /
    • 2018
  • 문맥 표현은 Recurrent neural network (RNN)에 기반한 언어 모델을 학습하여 얻은 여러 층의 히든 스테이트(hidden state)를 가중치 합(weighted sum)을 하여 얻어낸 벡터이다. Convolution neural network (CNN)를 이용하여 음절 표현을 학습하는 경우, 데이터 내에서 발생하는 미등록어를 처리할 수 있다. 본 논문에서는 음절 표현 CNN 기반의 포인터 네트워크와 문맥 표현을 함께 이용하는 방법을 제안하고, 이를 상호참조해결에 적용한다. 실험 결과, 질의응답 데이터셋에서 CoNLL F1 57.88%로 규칙기반에 비하여 11.09% 더 좋은 성능을 보였다.

  • PDF

개체명 문맥의미표현 학습을 통한 기계 요약의 사실 불일치 교정 (Learning Contextual Meaning Representations of Named Entities for Correcting Factual Inconsistent Summary)

  • 박준모;노윤석;박세영
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.54-59
    • /
    • 2020
  • 사실 불일치 교정은 기계 요약 시스템이 요약한 결과를 실제 사실과 일치하도록 만드는 작업이다. 실제 요약 생성연구에서 가장 공통적인 문제점은 요약을 생성할 때 잘못된 사실을 생성하는 것이다. 이는 요약 모델이 실제 서비스로 상용화 하는데 큰 걸림돌이 되는 부분 중 하나이다. 본 논문에서는 원문으로부터 개체명을 가져와 사실과 일치하는 문장으로 고치는 방법을 제안한다. 이를 위해서 언어 모델이 개체명에 대한 문맥적 표현을 잘 생성할 수 있도록 학습시킨다. 그리고 학습된 모델을 이용하여 원문과 요약문에 등장한 개체명들의 문맥적 표현 비교를 통해 적절한 단어로 교체함으로써 요약문의 사실 불일치를 해소한다. 제안 모델을 평가하기 위해 추상 요약 데이터를 이용해 학습데이터를 만들어 학습하고, 실제 시나리오에서 적용가능성을 검증하기 위해 모델이 요약한 요약문을 이용해 실험을 수행했다. 실험 결과, 자동 평가와 사람 평가에서 제안 모델이 비교 모델보다 높은 성능을 보여주었다.

  • PDF

생성적 적대적 신경망을 이용한 생성기반 멀티턴 챗봇 (Generative Multi-Turn Chatbot Using Generative Adversarial Network)

  • 김진태;김학수;권오욱;김영길
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.25-30
    • /
    • 2018
  • 기존의 검색 기반 챗봇 시스템과 다르게 생성 기반 챗봇 시스템은 사전에 정의된 응답에 의존하지 않고 채팅 말뭉치를 학습한 신경망 모델을 사용하여 응답을 생성한다. 생성 기반 챗봇 시스템이 사람과 같이 자연스러운 응답을 생성하려면 이전 문맥을 반영해야 할 필요가 있다. 기존 연구에서는 문맥을 반영하기 위해 이전 문맥과 입력 발화를 통합하여 하나의 벡터로 표현했다. 이러한 경우 이전 문맥과 입력 발화가 분리되어 있지 않아 이전 문맥이 필요하지 않는 경우 잡음으로 작용할 수 있다. 본 논문은 이러한 문제를 해결하기 위해 입력 발화와 이전 문맥을 각각의 벡터로 표현하는 방법을 제안한다. 또한 생성적 적대적 신경망을 통해 챗봇 시스템을 보강하는 방법을 제안한다. 채팅 말뭉치(55,000 개의 학습 데이터, 5,000개의 검증 데이터, 5,260 개의 평가 데이터)를 사용한 실험에서 제안한 문맥 반영 방법과 생성적 적대적 신경망을 통한 챗봇 시스템 보강 방법은 BLEU와 임베딩 기반 평가의 성능 향상에 도움을 주었다.

  • PDF

XML기반의 대화 메시지 설계 (Design of XML-based Conversational Messages)

  • 김경덕
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 봄 학술발표논문집 Vol.29 No.1 (B)
    • /
    • pp.574-576
    • /
    • 2002
  • 본 논문에서는 실시간 대화 행위에서 XML기반 메시지를 이용하여 대화 행위의 체계적 표현을 위한 XML기반 대화 메시지를 설계한다. 설계되는 XML기반 메시지는 대화 문맥의 구분과 문맥 흐름의 표현과 메시지의 다양한 스타일을 지원한다. 또한, 메시지가 XML을 기반으로 작성됨으로써 태그의 확장에 따라 다양한 대화를 효율적으로 표현하는 환경을 지원할 수 있다. 제안하는 XML기반 대화 메시지는 실시간 대화 행위를 위한 대화 메시지의 프로토타입이다. 응용 분양로는 헙업 작업에서 정보의 전달 및 공유, 온라인 게임에서 메시지의 시각적 효과의 지원, 모바일 메신저에서 미디어의 전송 및 표현 방법의 지원, 커뮤니티에서 사회적 행위의 지원 등이다

  • PDF

강건한 음향모델을 위한 모델의 상태와 문맥환경에 관한 연구 (A Study on Context Environment and Model State for Robustness Acoustic Models)

  • 최재영;오세진;황도삼
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2003년도 춘계학술발표대회논문집
    • /
    • pp.366-369
    • /
    • 2003
  • 본 연구에서는 강건한 문맥의존 음향모델을 작성하기 위한 기초적인 연구로서 문맥환경과 상태수의 변화에 따른 음향모델의 성능을 고찰하고자 한다. 음성은 시간함수로 표현되며 음절, 단어, 연속음성을 발성할때 자음과 모음에 따라 발성시간에 차이가 있으며 음성인식의 최소 인식단위로 널리 사용되는 음소의 앞과 뒤에 오는 문맥환경에 따라 인식성능에 많은 차이를 보이고 있다. 따라서 본 연구에서는 시간의 변화(상태수의 변화)와 상태분할 과정에서 문맥환경의 변화를 고려하여 다양한 형태의 문맥의존 음향모델을 작성하였다. 모델학습은 음소결정트리 기반 SSS 알고리즘(Phonetic Decision Tree-based Successive State Splitting: PDT-555)을 이용하였다 PDT-SSS 알고리즘은 미지의 문맥정보를 해결하기 위해 문맥방향과 시간방향으로 목표 상태수에 도달할 때까지 상태분할을 수행하여 모델을 작성하는 방법이다. 본 연구에서 강건한 문맥의존 음향모델을 학습하기 위한 방법의 유효성을 확인하기 위해 국어공학센터의 452 단어를 대상으로 음소와 단어인식 실험을 수행하였다. 실험결과, 음성의 시간변이에 따른 모델의 상태수와 각 음소의 문맥환경에 따라 인식성능의 변화를 고찰할 수 있었다. 따라서 본 연구는 향후 음성인식 시스템의 강건한 문맥의존 음향모델을 작성하는데 유효할 것으로 기대된다.

  • PDF

문맥 표현 기반 한국어 영화평 감성 분석 (Contextualized Embedding-based Korean Movie Review Sentiment Analysis)

  • 박천음;김건영;황현선;이창기
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.75-78
    • /
    • 2018
  • 감성 분석은 특정 대상에 대한 의견을 수집하고 분류하는 과정이다. 그러나 자연어에 담김 사람의 주관을 파악하는 일은 어려운 일로써, 기존의 감성 단어 사전이나 확률 모델은 이러한 문제를 해결하기 어려웠으나 딥 러닝의 발전으로 문제 해결을 시도할 수 있게 됐다. 본 논문에서는 사전 학습된 문맥 표현을 한국어 감성 분석에 활용하여 더 높은 성능을 낼 수 있음을 보인다.

  • PDF

Feed-Forward Neural Network를 이용한 문맥의존 철자오류 교정 (Context-sensitive Spelling Error Correction using Feed-Forward Neural Network)

  • 황현선;이창기
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.124-128
    • /
    • 2015
  • 문맥의존 철자오류는 해당 단어만 봤을 때에는 오류가 아니지만 문맥상으로는 오류인 문제를 말한다. 이러한 문제를 해결하기 위해서는 문맥정보를 보아야 하지만, 형태소 분석 단계에서는 자세한 문맥 정보를 보기 어렵다. 본 논문에서는 형태소 분석 정보만을 이용한 철자오류 수정을 위한 문맥으로 사전훈련(pre-training)된 단어 표현(Word Embedding)를 사용하고, 기존의 기계학습 알고리즘보다 좋다고 알려진 딥 러닝(Deep Learning) 기술을 적용한 시스템을 제안한다. 실험결과, 기존의 기계학습 알고리즘인 Structural SVM보다 높은 F1-measure 91.61 ~ 98.05%의 성능을 보였다.

  • PDF

이진 삼차 재귀 신경망과 유전자 알고리즘을 이용한 문맥-자유 문법의 추론 (Inference of Context-Free Grammars using Binary Third-order Recurrent Neural Networks with Genetic Algorithm)

  • 정순호
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권3호
    • /
    • pp.11-25
    • /
    • 2012
  • 이 논문은 이진 삼차 재귀 신경망(Binary Third-order Recurrent Neural Networks: BTRNN)에 유전자 알고리즘을 적용하여 문맥-자유 문법을 추론하는 방법을 제안한다. BTRNN은 각 입력심볼에 대응되는 재귀 신경망들의 다층적 구조이고 외부의 스택과 결합된다. BTRNN의 매개변수들은 모두 이진수로 표현되며 상태 전이와 동시에 스택의 한 동작이 실행된다. 염색체로 표현된 BTRNN들에 유전자 알고리즘을 적용하여 긍정과 부정의 입력 패턴들의 문맥-자유 문법을 추론하는 최적의 BTRNN를 얻는다. 이 방법은 기존의 신경망 이용방법보다 적은 학습량과 적은 학습회수로 작거나 같은 상태 수를 갖는 BTRNN을 추론한다. 또한 문법 표현의 염색체 이용방법보다 parsing과정에서 결정적인 상태전이와 스택동작이 실행되므로 입력 패턴에 대한 인식처리 시간복잡도가 우수하다. 문맥-자유 문법의 비단말 심볼의 개수 p, 단말 심볼의 개수 q, 그리고 길이가 k인 문자열이 입력이 될 때, BTRNN의 최대 상태수가 m이라고 하면, BTRNN의 인식처리 병렬처리 시간은 O(k)이고 순차처리 시간은 O(km)이다.

한국어 대어휘 음성DB를 이용한 HM-Net 음성인식 시스템의 성능평가 (Performance Evaluation of HM-Net Speech Recognition System using Korea Large Vocabulary Speech DB)

  • 오세진;김광동;노덕규;송민규;김범국;황철준;정현열
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.2443-2446
    • /
    • 2003
  • 본 논문에서는 한국전자통신연구원에서 제공된 대어휘 음성DB를 이용하여 HM-Net(Hidden Markov Network) 음성인식 시스템의 성능평가를 수행하였다. 음향모델 작성은 음성인식에서 널리 사용되고 있는 통계적인 모델링 방법인 HMM(Hidden Markov Model)을 개량한 HM-Net을 도입하였다 HM-Net은 PDT-SSS 알고리즘에 의해 문맥방향과 시간방향의 상태분할을 수행하여 생성되는데, 특히 문맥방향 상태분할의 경우 학습 음성데이터에 출현하지 않는 문맥정보를 효과적으로 표현하기 위해 음소결정트리를 채용하고 있으며, 시간방향 상태분할의 경우 학습 음성데이터에서 각 음소별 지속시간 정보를 효과적으로 표현하기 위한 상태분할을 수행한다. 이러한 상태분할을 수행하여 파라미터를 공유하게 되며 최적인 모델 네트워크를 작성하게 된다. 대어휘 음성데이터를 이용하여 음향모델을 작성하고 인식실험을 수행한 결과, 100명의 100단어와 60문장에 대해 평균 97.5%, 96.7%의 인식률을 보였다.

  • PDF

공기정보 벡터를 이용한 한국어 명사의 의미구분 (Word Sense Disambiguation Using of Cooccurrence Information Vectors)

  • 신사임;이주호;최용석;최기선
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2001년도 제13회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.472-478
    • /
    • 2001
  • 본 논문은 문맥의 공기정보를 사용한 한국어 명사의 의미구분에 관한 연구이다. 대상 명사에 대한 문맥의 지엽적인 단어분포는 명사의 의미구분을 위한 의미적 특성을 표현하는데 충분하지 못하다. 본 논문은 의미별로 수집한 문맥 정보를 기저 벡터화 하는 방법을 제안한다. 정보의 중요도 측정을 통하여 의미구분에 불필요한 문맥정보는 제거하고, 남아있는 문맥의 단어들은 변별력 강화를 위하여 상의어 정보로 바꾸어 기저벡터에 사용한다. 상의어 정보는 단어의 형태와 사전 정의문의 패턴을 통해 추출한다. 의미 벡터를 통한 의미구분에 실패하였을 경우엔 훈련데이터에서 가장 많이 나타난 의미로 정답을 제시한다. 실험을 위해 본 논문에서는 SENSEVAL 실험집합을 사용하였으며, 제시한 방법으로 공기정보의 가공 없이 그대로 실험한 방법과 비교하여 최고 42% 정도의 정확률 향상을 나타내었다.

  • PDF