• 제목/요약/키워드: 문맥 반영 방법

검색결과 66건 처리시간 0.029초

CNN-LSTM을 이용한 대화 문맥 반영과 감정 분류 (Using CNN-LSTM for Effective Application of Dialogue Context to Emotion Classification)

  • 신동원;이연수;장정선;임해창
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2016년도 제28회 한글및한국어정보처리학술대회
    • /
    • pp.141-146
    • /
    • 2016
  • 대화 시스템에서 사용자가 나타내는 발화에 내재된 감정을 분류하는 것은, 시스템이 적절한 응답과 서비스를 제공하는데 있어 매우 중요하다. 본 연구에서는 대화 내 감정 분류를 하는데 있어 직접적, 간접적으로 드러나는 감정 자질을 자동으로 학습하고 감정이 지속되는 대화 문맥을 효과적으로 반영하기 위해 CNN-LSTM 방식의 딥 뉴럴 네트워크 구조를 제안한다. 그리고 대량의 구어체 코퍼스를 이용한 사전 학습으로 데이터 부족 문제를 완화하였다. 실험 결과 제안하는 방법이 기존의 SVM이나, 단순한 RNN, CNN 네트워크 구조에 비해 전반전인 성능 향상을 보였고, 특히 감정이 있는 경우 더 잘 분류하는 것을 확인할 수 있었다.

  • PDF

CNN-LSTM을 이용한 대화 문맥 반영과 감정 분류 (Using CNN-LSTM for Effective Application of Dialogue Context to Emotion Classification)

  • 신동원;이연수;장정선;임해창
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2016년도 제28회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.141-146
    • /
    • 2016
  • 대화 시스템에서 사용자가 나타내는 발화에 내재된 감정을 분류하는 것은, 시스템이 적절한 응답과 서비스를 제공하는데 있어 매우 중요하다. 본 연구에서는 대화 내 감정 분류를 하는데 있어 직접적, 간접적으로 드러나는 감정 자질을 자동으로 학습하고 감정이 지속되는 대화 문맥을 효과적으로 반영하기 위해 CNN-LSTM 방식의 딥 뉴럴 네트워크 구조를 제안한다. 그리고 대량의 구어체 코퍼스를 이용한 사전 학습으로 데이터 부족 문제를 완화하였다. 실험 결과 제안하는 방법이 기존의 SVM이나, 단순한 RNN, CNN 네트워크 구조에 비해 전반전인 성능 향상을 보였고, 특히 감정이 있는 경우 더 잘 분류하는 것을 확인할 수 있었다.

  • PDF

워드 임베딩을 활용한 한국어 가짜뉴스 탐지 모델에 관한 연구 (A Study on Korean Fake news Detection Model Using Word Embedding)

  • 심재승;이재준;정이태;안현철
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2020년도 제62차 하계학술대회논문집 28권2호
    • /
    • pp.199-202
    • /
    • 2020
  • 본 논문에서는 가짜뉴스 탐지 모델에 워드 임베딩 기법을 접목하여 성능을 향상시키는 방법을 제안한다. 기존의 한국어 가짜뉴스 탐지 연구는 희소 표현인 빈도-역문서 빈도(TF-IDF)를 활용한 탐지 모델들이 주를 이루었다. 하지만 이는 가짜뉴스 탐지의 관점에서 뉴스의 언어적 특성을 파악하는 데 한계가 존재하는데, 특히 문맥에서 드러나는 언어적 특성을 구조적으로 반영하지 못한다. 이에 밀집 표현 기반의 워드 임베딩 기법인 Word2vec을 활용한 텍스트 전처리를 통해 문맥 정보까지 반영한 가짜뉴스 탐지 모델을 본 연구의 제안 모델로 생성한 후 TF-IDF 기반의 가짜뉴스 탐지 모델을 비교 모델로 생성하여 두 모델 간의 비교를 통한 성능 검증을 수행하였다. 그 결과 Word2vec 기반의 제안모형이 더욱 우수하였음을 확인하였다.

  • PDF

문맥 정보를 이용한 논문 문장 수사학적 분류 (Rhetorical Sentence Classification Using Context Information)

  • 성수진;김성찬;이승우;차정원
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.316-319
    • /
    • 2021
  • 우리는 과학기술 분야 논문 내 문장에 대해 논문의 의미 구조를 반영하는 수사학적 태그를 자동으로 부착하기 위한 분류 모델을 구축한다. 문장의 태그가 이전 문장의 태그와 상관관계를 갖는 특징을 반영하여 이전 문장을 추가 자질로 사용한다. 이전 문장을 추가 자질로 모델에 입력하기 위해 5 가지 결합 방법에 대한 실험을 진행한다. 실험 결과 각 문장에 대해 독립된 인코더를 사용하고 인코더의 결과 벡터를 concatenation 연산으로 조합하여 분류를 수행하는 것이 가장 높은 성능을 보이는 것을 확인하였다.

  • PDF

딥러닝 방법을 이용한 발화의 공손함 판단 (Predicting the Politeness of an Utterance with Deep Learning)

  • 이찬희;황태선;김민정;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.280-283
    • /
    • 2019
  • 공손함은 인간 언어의 가장 흥미로운 특징 중 하나이며, 자연어처리 시스템이 인간과 자연스럽게 대화하기 위해 필수적으로 모델링해야 할 요소이다. 본 연구에서는 인간의 발화가 주어졌을 때, 이의 공손함을 판단할 수 있는 시스템을 구현한다. 이를 위해 딥러닝 방법인 양방향 LSTM 모델과, 최근 자연어처리 분야에서 각광받고 있는 BERT 모델에 대해 성능 비교를 수행하였다. 이 두 기술은 모두 문맥 정보를 반영할 수 있는 모델로서, 같은 단어라도 문맥 정보에 따라 의미가 달라질 수 있는 공손함의 미묘한 차이를 반영할 수 있다. 실험 결과, 여러 설정에 거쳐 BERT 모델이 양방향 LSTM 모델보다 더 우수함을 확인하였다. 또한, 발화가 구어체보다 문어체에 가까울 수록 딥러닝 모델의 성능이 더 좋은 것으로 나타났다. 제안된 두 가지 방법의 성능을 인간의 판단 능력과 비교해본 결과, 위키피디아 도메인에서 BERT 모델이 91.71%의 성능을 보여 인간의 정확도인 86.72%를 상회함을 확인하였다.

  • PDF

시나리오 기반 자기적응형 소프트웨어의 효율적인 분석 방안 (An Efficiency Analysis Method of Self-adaptive software based Scenario)

  • 백수진;송영재
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 추계학술발표대회
    • /
    • pp.492-495
    • /
    • 2008
  • 기존 컴퓨팅 패러다임에서는 고정된 환경을 가정하여 소프트웨어를 설계하였으므로 급속한 시장 환경의 변화와 소비자의 불확실한 요구조건에 대응하여 개발하기에 어려움이 있다. 따라서 외부 환경의 변화를 직면하였을 때 동작을 멈추는 것이 아니라 그 변화를 감지하고 대안을 선택하여 지속적으로 서비스를 제공할 수 있는 자기 적응형 소프트웨어가 필요하다. 그러나 기존의 자기적응형 소프트웨어에 대한 연구는 적응형 소프트웨어에 영향을 주는 문맥정보를 모델링하는 기법이나 적응을 위해 대체할 수 있는 기능들을 찾아내는 방법에 대한 연구가 부족한 실정이다. 이 문제를 해결하기 위해 본 논문은 시나리오를 이용한 목표 기반으로 분석을 하고, 분석된 요구사항의 가변 수와 크기에 따라 프로그램의 문법뿐 아니라 사용자의 관점에서도 의미 있도록 프로그램 동적 슬라이싱 기법을 적용하도록 한다. 또한, 제안된 방법이 전 과정에 문맥에 대한 분석, 설계 정보가 반영되어 동적으로 재구성하는 방법을 제시하도록 한다.

영작문 자동 채점 시스템을 위한 문맥 고려 단어 오류 검사기 (Context-sensitive Word Error Detection and Correction for Automatic Scoring System of English Writing)

  • 최용석;이공주
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제4권1호
    • /
    • pp.45-56
    • /
    • 2015
  • 본 연구에서는 문맥 정보를 함께 고려해야만 인식할 수 있는 단어 오류에 대하여 오류 인식 방법과 수정 후보 생성 방법을 제안한다. 이 문제는 기존의 영어권에서 이미 많이 다룬 연구 주제이다. 본 연구에서는 영어 자동채점 시스템에서 사용하도록 특화된 방법을 제안한다. 문맥 정보를 고려한 단어 오류 검사에서는 자주 혼동되어 사용되는 단어집합(confusion set)을 활용한다. 비영어권 사용자의 작문 특성을 반영하기 위해 기존의 영어권에서 구축한 혼동집합 이외에 자동으로 혼동집합을 구축하여 실험해 보았다. 또한 품사 중의성으로 인해 기존의 구문오류 검사기가 다루지 못하는 오류를 정의하고 오류 인식과 오류수정 후보를 생성하는 방법을 제안한다. 실제 한국어가 모국어이면서 초/중급 작문 수준의 수험생들이 작성한 영어 문장에 대해 평가해 본 결과, 약 70.48%의 f1 값을 얻어 기존의 영어권 결과에 비해 뒤지지 않는 성능을 보였다.

템플릿에 기반한 기록정보 QA (Record Information Retrieval based on Template)

  • 이충희;오효정;김현진;장명길
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.478-480
    • /
    • 2005
  • 기네스 기록과 같은 기록정보는 사용자가 질의응답 시스템에 자주 질문할 수 있는 내용이지만, 구성단어의 수가 적고 일반적인 단어로 구성되는 기록정보 문장의 특성으로 인해 전통적인 질의응답 시스템에서는 정답을 제시하기 힘든 정보이다. 그러므로 기록정보만을 위한 접근방법이 필요하다. 우리는 기록정보는 특정 문맥에 의해 쓰여지는 경우가 많다는 가정 하에, 문맥 정보를 반영할 수 있는 템플릿을 정의하고, 이 템플릿에 의해서 기록정보를 색인하여 정답을 제시하는 시스템을 제안한다. 템플릿은 거리, 형태소, 형태 소품사, 정답유형, 구문 정보의 5가지 제약정보를 나타낼 수 있게 구성된다. 전통적인 백과사전 QA 시스템과 제안 시스템을 비교하여 평가한 결과, 제안한 방법이 기록정보 QA 시스템에 효과적임을 알 수 있었다.

  • PDF

용어의 문맥활용을 통한 문헌 자동 분류의 성능 향상에 관한 연구 (A Study on Improving the Performance of Document Classification Using the Context of Terms)

  • 송성전;정영미
    • 정보관리학회지
    • /
    • 제29권2호
    • /
    • pp.205-224
    • /
    • 2012
  • 자동 분류에서 문헌을 표현하는 일반적인 방식인 BOW는 용어를 독립적으로 처리하기 때문에 주변 문맥을 반영하지 못한다는 한계가 있다. 이에 본 연구는 각 용어마다 주제범주별 문맥적 특징을 파악해 프로파일로 정의하고, 이 프로파일과 실제 문헌에서의 문맥을 비교하는 과정을 통해 동일한 형태의 용어라도 그 의미나 주제적 배경에 따라 구분하고자 하였다. 이를 통해 주제가 서로 다름에도 불구하고 특정 용어의 출현만으로 잘못된 분류 판정을 하는 문제를 극복하고자 하였다. 본 연구에서는 이러한 문맥적 요소를 용어 가중치, 분류기 결합, 자질선정의 3가지 항목에 적용해 보고 그 분류 성능을 측정했다. 그 결과, 세 경우 모두 베이스라인보다 분류 성능이 향상되었고 가장 큰 성능 향상을 보인 것은 분류기 결합이었다. 또한 제안한 방법은 학습문헌 수가 많고 적음에 따라 발생하는 성능의 편향을 완화하는데도 효과적인 것으로 나타났다.

문맥을 고려한 예제 기반 동영상 검색 알고리즘 (Content Based Video Retrieval by Example Considering Context)

  • 박주현;낭종호;김경수;하명환;정병희
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제30권12호
    • /
    • pp.756-771
    • /
    • 2003
  • 효율적인 동영상 검색 방법은 많은 양의 동영상 데이터를 관리하는 디지털 비디오 라이브러리 시스템에서 필수적으로 요구되는 기능이다. 본 논문에서는 샷 단위 동영상을 문맥, 전경, 배경, 오디오로 나누어 비교하여 질의 동영상과 비슷한 동영상을 찾아내는 예제 기반 동영상 검색 알고리즘을 제안하였고, 제안한 알고리즘에 따라서 저작 및 검색도구를 구현하였다. 샷간의 관계 정보 즉, 문맥을 고려한다는 것은 인접한 샷들 간의 오디오, 움직임 정보들과 같은 저급 수준 내용 정보 간에 변화 패턴을 비교한다는 것이다. 두 번째 비교 요소인 전경은 움직이는 객체들의 집합을 의미하고, 세 번째 비교 요소인 배경은 전경을 제외한 나머지 비디오 정보를 의미한다. 이러한 비교 방법은 동영상 제작 과정에 근거한 것으로써 사용자로 하여금 직관적인 비교를 할 수 있게 한다. 또한 질의 신을 직접 구성할 수 있게 하였고, 각각의 비교요소에 가중치를 부여할 수 있도록 하여서 사용자의 검색의도를 자유롭게 반영할 수 있도록 하였다. 본 논문에서는 동영상이 가지고 있는 의미 정보를 검색에 완전히 반영하지는 못하지만, 문맥을 통해서 부분적인 의미 정보를 사용할 수 있도록 하였으며, 질의 신 구성과 직관적인 비교 요소를 사용함으로써 사용자의 검색 의도를 최대한 반영하고자 하였다.