기존의 검색 기반 챗봇 시스템과 다르게 생성 기반 챗봇 시스템은 사전에 정의된 응답에 의존하지 않고 채팅 말뭉치를 학습한 신경망 모델을 사용하여 응답을 생성한다. 생성 기반 챗봇 시스템이 사람과 같이 자연스러운 응답을 생성하려면 이전 문맥을 반영해야 할 필요가 있다. 기존 연구에서는 문맥을 반영하기 위해 이전 문맥과 입력 발화를 통합하여 하나의 벡터로 표현했다. 이러한 경우 이전 문맥과 입력 발화가 분리되어 있지 않아 이전 문맥이 필요하지 않는 경우 잡음으로 작용할 수 있다. 본 논문은 이러한 문제를 해결하기 위해 입력 발화와 이전 문맥을 각각의 벡터로 표현하는 방법을 제안한다. 또한 생성적 적대적 신경망을 통해 챗봇 시스템을 보강하는 방법을 제안한다. 채팅 말뭉치(55,000 개의 학습 데이터, 5,000개의 검증 데이터, 5,260 개의 평가 데이터)를 사용한 실험에서 제안한 문맥 반영 방법과 생성적 적대적 신경망을 통한 챗봇 시스템 보강 방법은 BLEU와 임베딩 기반 평가의 성능 향상에 도움을 주었다.
최근 음성 합성 과정에서 화자의 의도를 가장 많이 반영하는 언어 정보인 문맥 정보를 사용하려는 시도가 이루어지고 있으나 문맥 정보를 적은 비중으로 사용하기 때문에 자연성 향상에 큰 도움을 주지 못하고 있다. 본 연구에서는 구문 정보, 의미 정보를 억양 생성 과정에 이용함과 동시에 문맥 정보와 음성 정보와의 관계를 음성 데이터를 바탕으로 분석하여 다양한 문맥 정보를 음성 합성 과정에 반영하는 방법을 제안한다. 또한 한국어에서 나타나는 다양한 억양 곡선 유형을 형태소를 이용하여 의다 효율적으로 처리할 수 있는 방법을 제안하여 자연스러운 억양 생성 시스템을 구현하고 시스템의 결과를 음소 단위 억양 생성기와 VoiceXML을 이용하여 적용시켜보고 결과를 논의한다.
문맥광고 또는 컨텍스트 기반 광고란 사용자들이 선택한 웹 콘텐츠 내용을 기반으로 하여 연관성 있는 광고를 자동으로 선택하여 사용자에게 제공하는 광고기법이다. 즉, 웹 사이트를 방문하는 고객을 타겟으로 하여 그들이 찾고자 하는 것과 관련된 광고를 내보냄으로써 효과적인 광고가 이루어지도록 하는 것이다. 그러나 기존의 문맥광고는 사용자가 관심을 가지는 키워드가 아닌 광고주가 선택한 키워드를 중심으로 광고 내용을 선택하기 때문에 사용자의 실제적인 관심이 반영되지 않아 광고의 효과가 떨어지는 문제점을 가지고 있다. 이러한 문제를 해결하기 위해 본 논문에서는 사용자가 웹 콘텐츠를 선택할 때 마다 사용자의 선호도를 동적으로 학습하고, 학습된 선호도를 문맥광고에 활용하는 개인화된 문맥광고를 제안한다. 실험을 위해서 제안한 방법으로 광고를 생성해서 보여주는 웹 브라우저를 구현하여 기존의 문맥광고와 개인화된 문맥광고에 대한 사용자의 평가를 비교하였다. 실험 결과 본 논문에서 제안한 개인화된 문맥광고가 ‘콘텐츠의 내용과의 연관성’, ‘사용자의 클릭여부’ 등의 항목에서 기존의 문맥광고에 비해 우수하다는 결과를 얻을 수 있었다.
질의와 질의 주변에 나오는 어휘는 의미적으로 연관되어있다는 가정하에 질의뿐만 아니라 질의 주변에 나오는 문맥 어휘들도 가중치를 높여준다면 검색에 효율을 높일 수 있을 것이다. 본 논문에서는 질의와 질의 주변에 나오는 문맥 어휘들에게 가중치를 주어 질의 어휘의 위치 가중치를 반영한 문서를 표현하고, 위치 가중치가 반영된 문서 벡터들 사이의 유사도를 계산하여 클러스터 기반 재순위화를 하여 성능을 향상시키는 방법을 제안한다. 뉴스 집합인 TREC AP 문서를 이용하여 언어모델, 위치 가중치를 이용한 언어모델, 클러스터 기반 재순위화 모델의 비교실험을 통해 유효성을 검증한다.
단어 중의성 해소 방법은 지식 정보를 활용하여 문제를 해결하는 지식 기반 방법과 각종 기계학습 모델을 이용하여 문제를 해결하는 지도학습 방법이 있다. 지도학습 방법은 높은 성능을 보이지만 대량의 정제된 학습 데이터가 필요하다. 반대로 지식 기반 방법은 대량의 정제된 학습데이터는 필요없지만 높은 성능을 기대할수 없다. 최근에는 이러한 문제를 보완하기 위해 지식내에 있는 정보와 정제된 학습데이터를 기계학습 모델에 학습하여 단어 중의성 해소 방법을 해결하고 있다. 가장 많이 활용하고 있는 지식 정보는 상위어(Hypernym)와 하위어(Hyponym), 동의어(Synonym)가 가지는 의미설명(Gloss)정보이다. 이 정보의 표상을 기존의 문장의 표상과 같이 활용하여 중의성 단어가 가지는 의미를 파악한다. 하지만 정확한 문장의 표상을 얻기 위해서는 단어의 표상을 잘 만들어줘야 하는데 기존의 방법론들은 모두 문장내의 문맥정보만을 파악하여 표현하였기 때문에 정확한 의미를 반영하는데 한계가 있었다. 본 논문에서는 의미정보와 문맥정보를 담은 단어의 표상정보를 만들기 위해 구문정보, 의미관계 그래프정보를 GCN(Graph Convolutional Network)를 활용하여 임베딩을 표현하였고, 기존의 모델에 반영하여 문맥정보만을 활용한 단어 표상보다 높은 성능을 보였다.
본 논문에서는 형태소 분석 대상 어절의 좌우 어절내의 대표 형태소 어휘 문맥 정보에 기반한 형태소 오류 정정 방안을 제안한다. 현재까지 주변의 품사열 문맥 정보에만 의존하는 기존의 품사 태깅 모델과 달리 주변 어휘를 반영할 수 있는 좌우 어절 문맥을 이용해 형태소 태거의 성능을 향상시킬 수 있는 방법들이 제시되었다. 그러나 이러한 어절 문맥에 의한 지속적인 성능 향상을 위해서는 대량의 품사 태킹 문맥 정보를 필요로 한다. 따라서 본 논문에서는 이러한 자료 부족 문제를 해결하기 위하여 기존의 분석 대상 어절 좌우의 어절 단위의 어휘 문맥 정보가 아닌 좌우 어절내의 대표 형태소 단위의 형태소 어휘 문맥을 이용한 품사 태깅 오류 정정 방안을 제안한다. 실험을 통해, 형태소 어휘 단위의 문맥 정보의 적용성(Coverage)의 높고 기존의 품사 문맥 정보 기반의 형태소 분석기의 태깅 오류를 정정하여 그 정확성을 크게 향상시킬 수 있음을 보인다.
본 논문은 영한 기계번역을 위한 예제기반 기계번역에서 예제 문장의 비교를 위한 척도에 관한 것으로 주어진 질의 문장과 가장 유사한 예제 문장을 찾아내는데 사용되는 유사성 척도를 제안한다. 제안하는 척도는 편집거리 알고리즘에 기반을 둔 것으로 표면어가 일치하지 않는 단어에 대해 기본적으로 단어의 표제어 정보와 품사 정보를 이용하여 유사도를 계산한다. 편집거리 척도는 비교 단위의 순서에 의존적이기는 하지만 순서만 일치하면 동일한 유사성 기여도를 갖는 것으로 판단하기 때문에 완전 문맥을 반영하지는 못한다. 따라서 본 논문에서는 완전 문맥 반영을 위해 추가적으로 이들 정보 외에 일치하는 단위 정보를 갖는 연속된 단어들에 대해 연속 정보를 반영한 문맥 가중치를 제안한다. 또한 비유사성 정도를 의미하는 척도인 편집거리 척도를 유사성 척도로 변경하고, 문맥 가중치가 적용된 척도를 문장 비교에 적용하기 위하여 정규화를 수행하며, 이를 통하여 유사도에 따른 순위를 결정한다. 또한 언어적 정보를 이용한 기존 방법류들에 대한 일반화를 시도하였으며, 문맥 가중치가 적용된 척도의 우수성을 증명하기 위해 일반화된 기존 방법류들과의 비교 실험을 수행하였다.
어떤 용어가 전문적인 개념을 많이 내포하고 있을 때 전문성이 높다고 말한다. 본 논문에서는 용어의 내부 구성정보와 외부 문맥정보를 이용하여 정보이론에 기반한 방법으로 전문용어가 내포하는 전문성을 정량적으로 계산하는 방법을 제안한다. 용어의 전문성은 용어간 상하위어 관계 설정에서 중요한 필요조건으로 사용될 수 있다. 제안한 방법은 전문용어의 내부 구성정보를 이용하는 방법, 문맥정보를 이용하는 방법 그리고 두 정보를 모두 이용하는 방법으로 나눈다. 구성정보를 이용하는 방법에서는 전문용어를 구성하는 단어의 빈도수, 가중치, 바이그램, 내부 수식구조 둥을 이용하고, 문맥정보를 이용하는 방법에서는 전문용어를 수식하는 단어들의 분포를 이용한다. 본 논문에서 제안한 방법은 분야에 독립적으로 적용될 수 있고, 전문용어 생성 절차에 대한 특정을 잘 반영할 수 있는 장점이 있다. MeSH 트리에 포함된 질병 이름의 전문성 값을 계산한 뒤 상위어의 전문성 값과 비교한 결과 82.0%의 정확률을 보였다.
본 논문에서는 화자인식의 성능향상을 위한 dynamic time warping (DTW) 기반의 문맥 제시형 화자인식에 대해 연구하였다. 화자인식에 있어 중요한 요소인 화자의 특성을 잘 반영할 수 있는 참조패턴을 생성하기 위해 유전자 알고리즘을 적용하였다. 또한, 문맥 종속형과 문맥 독립형 화자인식의 단점을 개선하기 위해 문맥 제시형 화자인식을 수행하였다. Clos set에서 화자식별과 open set에서 화자확인 실험을 하였으며 실험결과 기존 방법의 참조패턴을 이용하였을 경우보다 유전자 알고리즘에 의한 참조패턴이 인식률과 인식속도 면에서 우수함을 보였다.
이중언어 사전 구축 방법을 평가하는 방법에는 정확률, 재현율, MRR(Mean Reciprocal Rank) 등이 있다. 이들 방법들은 평가 집합에 있는 대역어를 정확하게 찾는 것에 초점을 맞추고 있다. 그러나 어떤 대역어가 얼마나 많이 사용되는지는 전혀 고려하지 않는다. 즉 자주 사용되는 대역어를 빨리 찾을 수 있는 방법이 좋은 방법이라고 말할 수 있다. 이와 같은 문제를 해결하기 위해서 본 논문에서는 이중언어 사전 구축의 새로운 평가 방법인 등급 재현율을 제안한다. 등급 재현율(rated recall)은 대역어가 학습 말뭉치에 나타난 정도를 반영하는 재현율이며, 자주 사용되는 대역어를 얼마나 정확하게 찾는지를 파악할 수 있는 좋은 측도이다. 본 논문에서는 문맥벡터와 중간언어를 이용한 이중언어 사전 구축 시스템의 성능을 평가하고 기존의 방법과 비교 분석하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.