• 제목/요약/키워드: 문맥벡터

검색결과 67건 처리시간 0.021초

평면적 어휘 자질들을 활용한 확장 혼합 커널 기반 관계 추출 (Relation Extraction based on Extended Composite Kernel using Flat Lexical Features)

  • 최성필;정창후;최윤수;맹성현
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권8호
    • /
    • pp.642-652
    • /
    • 2009
  • 본 논문에서는 기존의 관계 추출 성능을 향상시키기 위해서 기존의 자질 기반 방법에서 추구하였던 개체 주변 문맥 다양성 정보의 추출 및 적용과 커널 기반 방법의 강점인 관계 인스턴스에 대한 구문 구조적 자질 정보의 통합 활용을 통한 확장된 혼합 커널을 제안한다. ACE RDC 코퍼스를 활용한 실험에서, 기존의 합성곱 구문 트리 커널 기반 혼합 커널을 기반으로 총 9 종류의 평면적 어휘 자질 집합을 정의하고 이를 적용함으로써 성능 향상에 기여하는 어휘 자질 유형을 파악할 수 있었으며, 적은 규모의 학습 집합으로도 현재 최고 수준의 성능에 필적하는 결과를 얻을 수 있었다. 결론적으로 관계 추출을 위한 세 가지 핵심 정보, 즉 개체 자질, 구문 구조적 자질, 주변 문맥 어휘 자질을 통합 적용하면 관계 추출의 성능을 향상시킬 수 있음을 알 수 있었다.

미디어 오디오에서의 DNN 기반 음성 검출 (DNN based Speech Detection for the Media Audio)

  • 장인선;안충현;서정일;장윤선
    • 방송공학회논문지
    • /
    • 제22권5호
    • /
    • pp.632-642
    • /
    • 2017
  • 본 논문에서는 미디어 오디오의 음향 특성 및 문맥 정보를 활용한 DNN 기반 음성 검출 시스템을 제안한다. 미디어 오디오 내에 포함되어 있는 음성과 비음성을 구분하기 위한 음성 검출 기법은 효과적인 음성 처리를 위해 필수적인 전처리 기술이지만 미디어 오디오 신호에는 다양한 형태의 음원이 복합적으로 포함되어 있으므로 기존의 신호처리 기법으로는 높은 성능을 얻기에는 어려움이 있었다. 제안하는 기술은 미디어 오디오의 고조파와 퍼커시브 성분을 분리하고, 오디오 콘텐츠에 포함된 문맥 정보를 반영하여 DNN 입력 벡터를 구성함으로써 음성 검출 성능을 개선할 수 있다. 제안하는 시스템의 성능을 검증하기 위하여 20시간 이상 분량의 드라마를 활용하여 음성 검출용 데이터 세트를 제작하였으며 범용으로 공개된 8시간 분량의 헐리우드 영화 데이터 세트를 추가로 확보하여 실험에 활용하였다. 실험에서는 두 데이터 세트에 대한 교차 검증을 통하여 제안하는 시스템이 기존 방법에 비해 우수한 성능을 보임을 확인하였다.

Word2Vec을 이용한 반복적 접근 방식의 그래프 기반 단어 중의성 해소 (An Iterative Approach to Graph-based Word Sense Disambiguation Using Word2Vec)

  • 오동석;강상우;서정연
    • 인지과학
    • /
    • 제27권1호
    • /
    • pp.43-60
    • /
    • 2016
  • 지식기반을 이용한 비지도 방법의 단어 중의성 해소 연구는 그래프 기반 단어 중의성 해소 방법에 중점을 두고 있다. 그래프 기반 방법은 중의성 단어와 문맥이나 문장에서 같이 등장한 단어들과 의미그래프를 구축하여 연결 관계를 보고 중의성을 해소한다. 하지만, 모든 중의성 단어를 가지고 의미 그래프를 구축하게 되면 불필요한 간선과 노드 정보가 추가되어 오류를 증가시킨다는 단점이 있다. 본 연구에서는 이러한 문제를 해결하고자 반복적 접근 방식의 그래프 기반 단어 중의성 해소 방식을 사용한다. 이 방식은 모든 중의성 단어들을 특정 기준에 의해서 단어를 매칭 하고 매칭 된 단어들을 반복적으로 그래프를 재구축하여 단어중의성을 해소한다. 본 연구에서는 Word2Vec을 이용하여 문맥이나 문장 내에 중의성 단어와 의미적으로 가장 유사한 단어끼리 매칭하고, 매칭 된 단어들을 순서대로 그래프를 재구축하여 중의성 단어의 의미를 결정하였다. 결과적으로 Word2Vec의 단어 벡터정보를 이용하여 이전에 연구 되었던 그래프 기반 방법과 반복적 접근 방식의 그래프 기반 방법보다 더 높은 성능을 보여준다.

  • PDF

질의응답 시스템에서 처음 보는 단어의 역문헌빈도 기반 단어 임베딩 기법 (Inverse Document Frequency-Based Word Embedding of Unseen Words for Question Answering Systems)

  • 이우인;송광호;심규석
    • 정보과학회 논문지
    • /
    • 제43권8호
    • /
    • pp.902-909
    • /
    • 2016
  • 질의응답 시스템은 사용자의 질문에 대한 답을 찾아주는 시스템으로, 기존의 검색엔진이 사용자의 질의에 대해 관련된 문서의 링크만을 찾아주는 반면 질문에 대한 최종적인 답을 찾아준다는 차이점이 있다. 특정 분야에 국한되지 않고 다양한 질문을 처리해주는 오픈 도메인 질의응답 시스템에 필요한 연구들이 최근 자연어 처리, 인공지능, 데이터 마이닝 등 학계의 다양한 분야들에서 뜨거운 관심을 받고 있다. 하지만 관련 연구에서는 학습 데이터에는 없었던 단어들이 질문에 대한 정확한 답과 유사한 오답을 구별해내는데 결정적인 역할을 할 수 있음에도, 이러한 처음 보는 단어들을 모두 단일 토큰으로 치환해버리는 문제가 있다. 본 논문에서는 문맥 정보를 통해 이러한 모르는 단어에 대한 벡터를 계산하는 방법을 제안한다. 그리고 역문헌빈도 가중치를 활용하여 문맥정보를 더 효율적으로 처리하는 모델을 제안한다. 또한 풍부한 실험을 통해 질의응답 시스템의 모델 학습 속도 및 정확성이 기존 연구에 비해 향상됨을 확인하였다.

한국어-영어/일본어-영어 교차언어정보검색에서 클러스터 분석을 통한 성능 향상 (Performance Improvement by Cluster Analysis in Korean-English and Japanese-English Cross-Language Information Retrieval)

  • 이경순
    • 정보처리학회논문지B
    • /
    • 제11B권2호
    • /
    • pp.233-240
    • /
    • 2004
  • 본 논문에서는 교차언어정보검색에서 점진적 클러스터링을 통해서 모호성을 묵시적으로 해소하는 방법을 제안한다. 연구 목적은 질의 번역에서 모호성이 크게 증가된 상태에서 문서 클러스터가 문서 문맥 역할과 모호성 해소 역할을 하는지를 보고자 하는 것이다. 제안하는 방법은 한국어/일본어 질의를 사전을 이용하여 영어로 번역을 하고, 번역된 영어 질의에 대해서 벡터공간검색모델이나 확률검색모델에 의해서 문서를 검색한다 검색된 문서의 순위대로 점진적 클러스터를 동적으로 생성하고, 이 클러스터 정보를 질의에 반영해서 문서의 순위를 다시 결정하는 것이다. TREC 테스트컬렉션을 이용한 실험에서 모호성 해소를 하지 않은 질의에 대해서, 제안한 방법은 한국어-영어 교차언어정보검색에서는 벡터공간검색모델에서 39.41%의 성능향상, 확률검색모델에서 36.79%의 성능향상을 보였다. 일-영 교차언어정보검색에서는 각각 17.59%와 30.46%의 성능향상을 보였다. 적합성 피드백 방법과의 비교에서는 모호성 해소를 하지 않은 경우 확률검색모델에서 12.30%의 성능향상을 보였다. 이를 통해, 클러스터 분석은 질의 모호성 해소에 도움을 주어서 검색성능 향상에 기여하였음을 알 수 있다.

지능형 서비스 로봇을 위한 잡음에 강인한 문맥독립 화자식별 시스템 (Noise Robust Text-Independent Speaker Identification for Ubiquitous Robot Companion)

  • 김성탁;지미경;김회린;김혜진;윤호섭
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 1부
    • /
    • pp.190-194
    • /
    • 2008
  • 본 논문은 지능형 서비스 로봇의 여러 기술들 중에서 기본적인 기술인 화자식별 기술에 관한 내용이다. 화자식별 기술은 화자의 음성신호를 이용하여 등록된 화자들 중에서 가장 유사한 화자를 찾아내는 것이다. 기존의 mel-frequency cepstral coefficient 를 이용한 화자식별 시스템은 무잡음 환경에서는 높은 성능을 보장하지만 잡음환경에서는 성능이 급격하게 떨어진다. 이렇게 잡음환경에서 성능이 떨어지는 요인은 등록환경과 식별환경이 다른 불일치문제 때문이다. 본 논문에서는 불일치문제를 해결하기 위해 relative autocorrelation sequence mel-frequency cepstral coefficient 를 사용하였다. 또한, 기존의 relative autocorrelation sequence mel-frequency cepstral coefficient 의 제한된 정보문제와 잔여잡음문제를 해결하기 위해 멀티스트리밍 방법과 멀티스트리밍 방법에 특정벡터 재결합 방법을 결합한 하이브리드 방법을 제한 하였다. 실험결과 제한된 방법들이 기존의 특정벡터보다 잡음환경에서 높은 화자식별 성능을 보여주었다.

  • PDF

혼합 커널을 활용한 과학기술분야 용어간 관계 추출 (Extraction of Relationships between Scientific Terms based on Composite Kernels)

  • 최성필;최윤수;정창후;맹성현
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제15권12호
    • /
    • pp.988-992
    • /
    • 2009
  • 본 논문에서는 합성곱 구문 트리 커널(convolution parse tree kernel)과, 한 문장에서 나타나는 두 개체 간의 관계를 가장 잘 설명하는 동사 상당어구에 대한 개념화를 통해 생성되는 워드넷 신셋 벡터(WordNet synsets vector) 커널을 활용하여 과학기술분야 전문용어 간의 관계 추출을 시도하였다. 본 논문에서 적용한 모델의 성능 평가를 위해서 세 가지 검증 컬렉션을 활용하였으며, 각각의 컬렉션 마다 기존의 접근 방법론 보다 우수한 성능을 보여주었다. 특히 KREC 2008 컬렉션을 대상으로 한 성능 실험에서는, 기존의 합성곱 구문 트리 커널과 동사 신셋 벡터(verb synsets vector)를 함께 적용한 합성 커널이 비교적 높은 성능 향상(8% F1)을 나타내고 있다. 이는 성능을 높이기 위해서 관계 추출에서 많이 활용하였던 개체 자질 정보와 더불어 개체 주변에 존재하는 주변 문맥 정보(동사 및 동사 상당어구)도 매우 유용한 정보임을 입증하고 있다.

텐서공간모델 기반 시멘틱 검색 기법 (A Tensor Space Model based Semantic Search Technique)

  • 홍기주;김한준;장재영;전종훈
    • 한국전자거래학회지
    • /
    • 제21권4호
    • /
    • pp.1-14
    • /
    • 2016
  • 시멘틱 검색은 검색 사용자의 인지적 노력을 최소화하면서 사용자 질의의 문맥을 이해하여 의미에 맞는 문서를 정확히 찾아주는 기술이다. 아직 시멘틱 검색 기술은 온톨로지 또는 시멘틱 메타데이터 구축의 난제를 갖고 있으며 상용화 사례도 매우 미흡한 실정이다. 본 논문은 기존 시멘틱 검색 엔진의 한계를 극복하기 위하여 이전 연구에서 고안한 위키피디아 기반의 시멘틱 텐서공간모델을 활용하여 새로운 시멘틱 검색 기법을 제안한다. 제안하는 시멘틱 기법은 문서 집합에 출현하는 '단어'가 텐서공간모델에서 '문서-개념'의 2차 텐서(행렬), '개념'은 '문서-단어'의 2차 텐서로 표현된다는 성질을 이용하여 시멘틱 검색을 위해 요구되는 온톨로지 구축의 필요성을 없앤다. 그럼에도 불구하고, OHSUMED, SCOPUS 데이터셋을 이용한 성능평가를 통해 제안 기법이 벡터공간모델에서의 기존 검색 기법보다 우수함을 보인다.

BERT Sparse: BERT를 활용한 키워드 기반 실시간 문서 검색 (BERT Sparse: Keyword-based Document Retrieval using BERT in Real time)

  • 김영민;임승영;유인국;박소윤
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.3-8
    • /
    • 2020
  • 문서 검색은 오래 연구되어 온 자연어 처리의 중요한 분야 중 하나이다. 기존의 키워드 기반 검색 알고리즘 중 하나인 BM25는 성능에 명확한 한계가 있고, 딥러닝을 활용한 의미 기반 검색 알고리즘의 경우 문서가 압축되어 벡터로 변환되는 과정에서 정보의 손실이 생기는 문제가 있다. 이에 우리는 BERT Sparse라는 새로운 문서 검색 모델을 제안한다. BERT Sparse는 쿼리에 포함된 키워드를 활용하여 문서를 매칭하지만, 문서를 인코딩할 때는 BERT를 활용하여 쿼리의 문맥과 의미까지 반영할 수 있도록 고안하여, 기존 키워드 기반 검색 알고리즘의 한계를 극복하고자 하였다. BERT Sparse의 검색 속도는 BM25와 같은 키워드 기반 모델과 유사하여 실시간 서비스가 가능한 수준이며, 성능은 Recall@5 기준 93.87%로, BM25 알고리즘 검색 성능 대비 19% 뛰어나다. 최종적으로 BERT Sparse를 MRC 모델과 결합하여 open domain QA환경에서도 F1 score 81.87%를 얻었다.

  • PDF

텍스트 및 영상의 멀티모달분석을 이용한 트위터 사용자의 감성 흐름 모니터링 기술 (Monitoring Mood Trends of Twitter Users using Multi-modal Analysis method of Texts and Images)

  • 김은이;고은정
    • 한국융합학회논문지
    • /
    • 제9권1호
    • /
    • pp.419-431
    • /
    • 2018
  • 본 논문은 개인 사용자의 트윗을 분석하여 사용자의 감정 흐름을 모니터링할 수 있는 새로운 방법을 제안한다. 본 논문에서는 사용자의 감성 흐름을 정확하게 예측하기 위해서 기존의 텍스트 위주의 시스템과 달리 본 연구에서는 사용자가 쓴 텍스트와 영상 등으로부터 감성을 인식하는 멀티 모달 분석 기법이 개발된다. 제안된 방법에서는 먼저 어휘분석 및 문맥을 이용한 텍스트분석기와 학습기반의 영상감성인식기를 이용하여 텍스트 및 영상 트윗에 숨겨진 개별 감성을 추출한다. 이후 이들은 규칙기반 통합 방법에 의해 날짜별로 통합되고, 마지막으로 개인의 감성흐름을 보다 직관적으로 관측할 수 있도록 감성흐름그래프로 시각화한다. 제안된 방법의 효용성을 평가하기 위해 두 단계의 실험이 수행되었다. 먼저 4만여 개의 트윗으로부터 제안된 방법의 정확도 평가 실험이 수행되고, 최신 트윗 분석 기술과 비교 분석되었다. 두 번째 실험에서는 40명의 우울증을 가진 사용자와 일반사용자를 구분할 수 있는지에 대한 실험이 수행된 결과, 제안된 기술이 실제 사용자의 감성흐름을 모니터하는데 효율적임을 증명하였다.