• Title/Summary/Keyword: 문맥벡터

Search Result 67, Processing Time 0.03 seconds

Context Dependent Fusion with Support Vector Machines (Support Vector Machine을 이용한 문맥 민감형 융합)

  • Heo, Gyeongyong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.7
    • /
    • pp.37-45
    • /
    • 2013
  • Context dependent fusion (CDF) is a fusion algorithm that combines multiple outputs from different classifiers to achieve better performance. CDF tries to divide the problem context into several homogeneous sub-contexts and to fuse data locally with respect to each sub-context. CDF showed better performance than existing methods, however, it is sensitive to noise due to the large number of parameters optimized and the innate linearity limits the application of CDF. In this paper, a variant of CDF using support vector machines (SVMs) for fusion and kernel principal component analysis (K-PCA) for context extraction is proposed to solve the problems in CDF, named CDF-SVM. Kernel PCA can shape irregular clusters including elliptical ones through the non-linear kernel transformation and SVM can draw a non-linear decision boundary. Regularization terms is also included in the objective function of CDF-SVM to mitigate the noise sensitivity in CDF. CDF-SVM showed better performance than CDF and its variants, which is demonstrated through the experiments with a landmine data set.

KoELMo: Deep Contextualized word representations for Korean (KoELMo: 한국어를 위한 문맥화된 단어 표상)

  • Hong, Seung-Yean;Na, Seung-Hoon;Shin, Jong-Hoon;Kim, Young-Kil
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.296-298
    • /
    • 2018
  • 기존의 Word2Vec이나 Glove 등의 단어 임베딩 모델은 문맥에 상관없이 단어의 Vector들이 고정된 Vector를 가지는 문제가 있다. ELMo는 훈련된 Bi-LSTM 모델을 통해서 문장마다 Word Embedding을 수행하기 때문에 문맥에 상관없이 고정된 Vector를 가지는 문제를 해결하였다. 본 논문에서는 한국어와 같이 형태적으로 복잡한 언어의 경우 수 많은 단어가 파생될 수 있어 단어 임베딩 벡터를 직접적으로 얻는 방식에는 한계가 있기 때문에 형태소의 표상들을 결합하여 단어 표상을 사용한 ELMo를 제안한다. ELMo 단어 임베딩을 Biaffine attention 파싱 모델에 적용 결과 UAS에서 91.39%, LAS에서 90.79%으로 기존의 성능보다 향상된 성능을 얻었다.

  • PDF

Reranking Clusters based on Query Term Position and Context (질의의 위치와 문맥을 반영한 클러스터 기반 재순위화)

  • Jo, Seung-Hyeon;Jang, Gye-Hun;Lee, Kyung-Soon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.04a
    • /
    • pp.471-474
    • /
    • 2010
  • 질의와 질의 주변에 나오는 어휘는 의미적으로 연관되어있다는 가정하에 질의뿐만 아니라 질의 주변에 나오는 문맥 어휘들도 가중치를 높여준다면 검색에 효율을 높일 수 있을 것이다. 본 논문에서는 질의와 질의 주변에 나오는 문맥 어휘들에게 가중치를 주어 질의 어휘의 위치 가중치를 반영한 문서를 표현하고, 위치 가중치가 반영된 문서 벡터들 사이의 유사도를 계산하여 클러스터 기반 재순위화를 하여 성능을 향상시키는 방법을 제안한다. 뉴스 집합인 TREC AP 문서를 이용하여 언어모델, 위치 가중치를 이용한 언어모델, 클러스터 기반 재순위화 모델의 비교실험을 통해 유효성을 검증한다.

SMS Text Messages Filtering using Word Embedding and Deep Learning Techniques (워드 임베딩과 딥러닝 기법을 이용한 SMS 문자 메시지 필터링)

  • Lee, Hyun Young;Kang, Seung Shik
    • Smart Media Journal
    • /
    • v.7 no.4
    • /
    • pp.24-29
    • /
    • 2018
  • Text analysis technique for natural language processing in deep learning represents words in vector form through word embedding. In this paper, we propose a method of constructing a document vector and classifying it into spam and normal text message, using word embedding and deep learning method. Automatic spacing applied in the preprocessing process ensures that words with similar context are adjacently represented in vector space. Additionally, the intentional word formation errors with non-alphabetic or extraordinary characters are designed to avoid being blocked by spam message filter. Two embedding algorithms, CBOW and skip grams, are used to produce the sentence vector and the performance and the accuracy of deep learning based spam filter model are measured by comparing to those of SVM Light.

Word Sense Disambiguation of Korean Verbs Using Weight Information from Context (가중치 정보를 이용한 한국어 동사의 의미 중의성 해소)

  • Lim, Soo-Jong;Park, Young-Ja;Song, Man-Suk
    • Annual Conference on Human and Language Technology
    • /
    • 1998.10c
    • /
    • pp.425-429
    • /
    • 1998
  • 본 논문은 문맥에서 추출한 가중치 정보를 이용한 한국어 동사의 의미 중의성 해소 모델을 제안한다. 중의성이 있는 단어가 쓰인 문장에서 그 단어의 의미 결정에 영향을 주는 단어들로 의미 결정자 벡터를 구성하고, 사전에서 그 단어의 의미 항목에 쓰인 단어들로 의미 항목 벡터를 구성한다. 목적 단어의 의미는 두 벡터간의 유사도 계산에 의해 결정된다. 벡터간의 유사도 계산은 사전에서 추출된 공기 관계와 목적 단어가 속한 문장에서 추출한 거리와 품사정보에 기반한 가중치 정보를 이용하여 이루어진다. 4개의 한국어 동사에 대해 내부실험과 외부실험을 하였다. 내부 실험은 84%의 정확률과 baseline을 기준으로 50%의 성능향상, 외부 실험은 75%의 정확률과 baseline을 기준으로 40 %의 성능향상을 보인다.

  • PDF

A Semi-Noniterative VQ Design Algorithm for Text Dependent Speaker Recognition (문맥종속 화자인식을 위한 준비반복 벡터 양자기 설계 알고리즘)

  • Lim, Dong-Chul;Lee, Haing-Sei
    • The KIPS Transactions:PartB
    • /
    • v.10B no.1
    • /
    • pp.67-72
    • /
    • 2003
  • In this paper, we study the enhancement of VQ (Vector Quantization) design for text dependent speaker recognition. In a concrete way, we present the non-Iterative method which makes a vector quantization codebook and this method Is nut Iterative learning so that the computational complexity is epochally reduced. The proposed semi-noniterative VQ design method contrasts with the existing design method which uses the iterative learning algorithm for every training speaker. The characteristics of a semi-noniterative VQ design is as follows. First, the proposed method performs the iterative learning only for the reference speaker, but the existing method performs the iterative learning for every speaker. Second, the quantization region of the non-reference speaker is equivalent for a quantization region of the reference speaker. And the quantization point of the non-reference speaker is the optimal point for the statistical distribution of the non-reference speaker In the numerical experiment, we use the 12th met-cepstrum feature vectors of 20 speakers and compare it with the existing method, changing the codebook size from 2 to 32. The recognition rate of the proposed method is 100% for suitable codebook size and adequate training data. It is equal to the recognition rate of the existing method. Therefore the proposed semi-noniterative VQ design method is, reducing computational complexity and maintaining the recognition rate, new alternative proposal.

An Efficient Competition-based Skip Motion Vector Coding Scheme Based on the Context-based Adaptive Choice of Motion Vector Predictors (효율적 경쟁 기반 스킵모드 부호화를 위한 적응적 문맥 기반 움직임 예측 후보 선택 기법)

  • Kim, Sung-Jei;Kim, Yong-Goo;Choe, Yoon-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5C
    • /
    • pp.464-471
    • /
    • 2010
  • The demand for high quality of multimedia applications, which far surpasses the rapid evolution of transmission and storage technologies, makes better compression coding capabilities ever increasingly more important. In order to provide enhanced video coding performance, this paper proposes an efficient competition-based motion vector coding scheme. The proposed algorithm adaptively forms the motion vector predictors based on the contexts of scene characteristics such as camera motion and nearby motion vectors, providing more efficient candidate predictors than the previous competition-based motion vector coding schemes which resort to the fixed candidates optimized by extensive simulations. Up to 200% of compression gain was observed in the experimental results for the proposed scheme applied to the motion vector selection for skip mode processing.

Document Classification Methodology Using Autoencoder-based Keywords Embedding

  • Seobin Yoon;Namgyu Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.9
    • /
    • pp.35-46
    • /
    • 2023
  • In this study, we propose a Dual Approach methodology to enhance the accuracy of document classifiers by utilizing both contextual and keyword information. Firstly, contextual information is extracted using Google's BERT, a pre-trained language model known for its outstanding performance in various natural language understanding tasks. Specifically, we employ KoBERT, a pre-trained model on the Korean corpus, to extract contextual information in the form of the CLS token. Secondly, keyword information is generated for each document by encoding the set of keywords into a single vector using an Autoencoder. We applied the proposed approach to 40,130 documents related to healthcare and medicine from the National R&D Projects database of the National Science and Technology Information Service (NTIS). The experimental results demonstrate that the proposed methodology outperforms existing methods that rely solely on document or word information in terms of accuracy for document classification.

Emotion Classification in Dialogues Using Embedding Features (임베딩 자질을 이용한 대화의 감정 분류)

  • Shin, Dong-Won;Lee, Yeon-Soo;Jang, Jung-Sun;Lim, Hae-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.109-114
    • /
    • 2015
  • 대화 시스템에서 사용자 발화에 대한 감정 분석은 적절한 시스템 응답과 서비스를 제공하는데 있어 매우 중요한 정보이다. 본 연구에서는 단순한 긍, 부정이 아닌 분노, 슬픔, 공포, 기쁨 등 Plutchick의 8 분류 체계에 해당하는 상세한 감정을 분석 하는 데 있어, 임베딩 모델을 사용하여 기존의 어휘 자질을 효과적으로 사용할 수 있는 새로운 방법을 제안한다. 또한 대화 속에서 발생한 감정의 지속성을 반영하기 위하여 문장 임베딩 벡터와 문맥 임베딩 벡터를 자질로서 이용하는 방법에 대해 제안한다. 실험 결과 제안하는 임베딩 자질은 특히 내용어에 대해 기존의 어휘 자질을 대체할 수 있으며, 데이터 부족 문제를 다소 해소하여 성능 향상에 도움이 되는 것으로 나타났다.

  • PDF

Word Sense Disambiguation using Word2Vec (Word2Vec를 이용한 단어 의미 모호성 해소)

  • Kang, Myung Yun;Kim, Bogyum;Lee, Jae Sung
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.81-84
    • /
    • 2015
  • 자연어 문서에 출현하는 단어에는 중의적 단어가 있으며, 이 단어에서 발생되는 의미 모호성은 대개 그 문맥에 따라 해소된다. 의미 모호성 해소 연구 중, 한국어 단어 공간 모델 방법은 의미 태그 부착 말뭉치를 이용하여 단어의 문맥 정보를 구축하고 이를 이용하여 모호성을 해결하는 연구로서 비교적 좋은 성능을 보였다. 본 연구에서는 Word2Vec를 이용하여 기존 연구인 한국어 단어 공간 모델의 단어 벡터를 효과적으로 축소할 수 있는 방법을 제안한다. 세종 형태 의미 분석 말뭉치로 실험한 결과, 제안한 방법이 기존 성능인 93.99%와 유사한 93.32%의 정확률을 보이면서도 약 7.6배의 속도 향상이 있었다.

  • PDF