영한 자동번역 시스템에서 대역어 선택 모듈은 어휘 변환을 수행한다. 일반적으로 영어 단어는 다양한 한국어 단어로 번역될 수 있는 의미적 모호성을 지니고 있으며, 고품질의 영한 자동번역 결과를 제공하기 위해서는, 해당 문맥에 가장 적합한 한국어 단어가 선택되어야 한다. 본 논문에서는 영어의 명사 어휘에 대하여, 벡터를 사용하는 2 단계 영한 대역어 선택 기법을 제안한다. 벡터를 사용하는 2 단계 대역어 선택 방식은 첫 번째 단계에서, 원문에서 사용된 영어 명사의 의미를 결정하고, 두 번째 단계에서, 해당 의미를 지니는 유사 한국어 대역어 가운데, 생성될 한국어 문맥에 맞는 적합한 한국어 대역어를 선택한다. 또한 제안하는 방법의 타당성을 검증하기 위해 현재 우리가 개발중인 Tellus-EK 영한 자동번역 시스템에 적용한 결과를 논한다.
지능형 음성 대화 인터페이스 구현에 있어 핵심어의 의미표지는 사용자 의도 파악을 위한 중요한 요소이다. 대화시스템은 사용자 발화의 의도를 파악하기 위해 핵심어와 그 의미표지를 이용하여 발화의 의도를 결정한다. 하나의 핵심어는 여러 개의 의미표지를 가질 수 있는 중의성을 지닌다. 이러한 중의성을 지닌 핵심어를 사용자의 의도와 일치하는 의미표지로 결정하는 것은 단어 의미 분별 문제와 유사하다. 우리는 전사된 대화 말뭉치의 약 23%를 수동으로 의미를 부착하여 핵심어에 대한 의미표지 사전, 유의어 사전, 문맥벡터 사전을 먼저 구축한 후, 나머지 77% 대화 말뭉치에 존재하는 핵심어의 의미를 자동으로 부착한다. 중의성을 가진 핵심어는 문맥벡터 사전으로부터 문맥 벡터 유사도를 계산하여 의미를 결정한다. 핵심어가 미등록어인 경우에는 유의어 사전을 이용하여 가장 유사한 핵심어를 찾아 그 핵심어의 의미를 부착한다. 중의성을 가진 고빈도 핵심어 3개와 저빈도 핵심어 3개를 말뭉치에서 선정하여 제안 시스템의 성능을 평가하였다. 실험결과, 수동으로 구축한 말뭉치를 사용하였을 때 약 54.4%의 정확도를 얻었고, 반자동으로 확장한 말뭉치를 사용하였을 때 약 50.0%의 정확도를 얻었다.
본 연구에서는 지지 벡터 기계(Support Vector Machines)를 이용하여 한국어 대화의 화행을 분석하는 방법을 제안한다. 우리는 발화의 어휘 및 품사와 이진 품사 쌍을 문장 자질로 사용하고 이전 발화의 문맥을 문맥 발화로 사용한다. 카이 제곱 통계량을 이용해 적절한 자질을 선택하고 선택된 자질로 지지 벡터 기계를 학습하였다. 학습된 지지 벡터 기계 분류기를 이용하여 각 발화의 화행을 분석하였다. 호텔 예약 영역의 말뭉치에 대해 제안된 시스템을 이용하여 실험한 결과 약 $90.54\%$의 정확률을 얻었다.
에세이의 창의성을 자동으로 분류하는 기존의 주요 연구는 말뭉치에서 빈번하게 등장하지 않는 단어에 초점을 맞추어 기계학습을 수행한다. 그러나 이러한 연구는 에세이의 주제와 상관없이 단순히 참신한 단어가 많아 창의적으로 분류되는 문제점이 발생한다. 본 논문에서는 어텐션(Attention)과 역문서 빈도(Inverse Document Frequency; IDF)를 이용하여 에세이 내용 전달에 있어 중요하면서 참신한 단어에 높은 가중치를 두는 문맥 벡터를 구하고, 자기부호화기(AutoEncoder) 모델을 사용하여 문맥 벡터들로부터 창의적인 에세이와 창의적이지 않은 에세이의 특징 벡터를 추출한다. 그리고 시험 단계에서 새로운 에세이의 특징 벡터와 비교하여 그 에세이가 창의적인지 아닌지 분류하는 딥러닝 모델을 제안한다. 실험 결과에 따르면 제안 방안은 기존 방안에 비해 높은 정확도를 보인다. 구체적으로 제안 방안의 평균 정확도는 92%였고 기존의 주요 방안보다 9%의 정확도 향상을 보였다.
문맥 표현은 Recurrent neural network (RNN)에 기반한 언어 모델을 학습하여 얻은 여러 층의 히든 스테이트(hidden state)를 가중치 합(weighted sum)을 하여 얻어낸 벡터이다. Convolution neural network (CNN)를 이용하여 음절 표현을 학습하는 경우, 데이터 내에서 발생하는 미등록어를 처리할 수 있다. 본 논문에서는 음절 표현 CNN 기반의 포인터 네트워크와 문맥 표현을 함께 이용하는 방법을 제안하고, 이를 상호참조해결에 적용한다. 실험 결과, 질의응답 데이터셋에서 CoNLL F1 57.88%로 규칙기반에 비하여 11.09% 더 좋은 성능을 보였다.
본 논문에서는 사용자가 별도의 훈련과정 없이 인식대상 어휘를 추가 및 변경이 가능한 가변어휘 인식시스템에 관하여 기술한다. 가변어휘 음성인식에서는 미리 구성된 음소모델을 토대로 인식대상 어휘가 결정되명 발음사전에 의거하여 이들 어휘에 해당하는 음소모델을 연결함으로써 단어모델을 만든다. 사용된 음소모델은 현재 음소의 앞뒤의 음소 context를 고려한 문맥종속형(Context-Dependent)음소모델인 triphone을 사용하였고, 연속확률분포를 가지는 Hidden Markov Model(HMM)기반의 고립단어인식 시스템을 구현하였다. 비교를 위해 문맥 독립형 음소모델인 monophone으로 인식실험을 병행하였다. 개발된 시스템은 음성특징벡터로 MFCC(Mel Frequency Cepstrum Coefficient)를 사용하였으며, test 환경에서 나타나지 않은 unseen triphone 문제를 해결하기 위하여 state-tying 방법중 음성학적 지식에 기반을 둔 tree-based clustering 기법을 도입하였다. 음소모델 훈련에는 ETRI에서 구축한 POW (Phonetically Optimized Words) 음성 데이터베이스(DB)[1]를 사용하였고, 어휘독립인식실험에는 POW DB와 관련없는 22개의 부서명을 50명이 발음한 총 1.100개의 고립단어 부서 DB[2]를 사용하였다. 인식실험결과 문맥독립형 음소모델이 88.6%를 보인데 비해 문맥종속형 음소모델은 96.2%의 더 나은 성능을 보였다.
단어의 의미 모호성을 해결하기 위한 연구는 오랫동안 지속되어 왔으며, 특히 최근에는 단어 벡터를 이용한 연구가 활발하게 이루어져왔다. 본 논문에서는 문맥 기반 단어 벡터인 BERT를 이용하여 한국어 단어 의미 모호성을 해소하기 위한 방법을 제안하고, 그 실험 결과를 기존의 한국어 단어 의미 모호성 연구 결과와 비교한다.
딥러닝 기법이 발달함에 따라 텍스트에 내재된 의미 및 구문을 어떠한 벡터 공간 상에 표현하기 위한 언어 모델이 활발히 연구되어 왔다. 이를 통해 자연어 처리를 기반으로 하는 감성 분석 및 문서 분류, 기계 번역 등의 분야가 진보되었다. 그러나 대부분의 언어 모델들은 텍스트에 나타나는 단어들의 일반적인 패턴을 학습하는 것을 기반으로 하기 때문에, 문서 요약이나 스토리텔링, 의역된 문장 판별 등과 같이 보다 고도화된 자연어의 이해를 필요로 하는 연구들의 경우 주어진 텍스트의 주제 및 의미를 고려하기에 한계점이 있다. 이와 같은 한계점을 고려하기 위하여, 본 연구에서는 기존의 LSTM 모델을 변형하여 문서 주제와 해당 주제에서 단어가 가지는 문맥적인 의미를 단어 벡터 표현에 반영할 수 있는 새로운 언어 학습 모델을 제안하고, 본 제안 모델이 문서의 주제를 고려하여 문장을 자동으로 생성할 수 있음을 보이고자 한다.
본 논문은 한국어-스페인어와 한국어-불어 간의 양방향 이국어 사전(Bi-directional bilingual lexicon)을 자동으로 구축하기 위한 새로운 방법을 제안한다. 일반적으로 한국어와 스페인어/불어 간의 병렬 말뭉치를 직접적으로 구축하기에는 어려움에 따르기 때문에, 영어를 중심언어로 하는 영어(EN)-한국어(KR)/스페인어(ES)/불어(FR) 병렬 말뭉치를 이용하여 문맥 벡터를 만들고 그들 간의 유사도를 계산하는 변형된 문맥 벡터 방법을 제안한다. 영어는 다른 언어와의 이국어 병렬 말뭉치가 비교적 많이 공개되어 있기 때문에 이 방법을 이용하면 비교적 쉽게 KR-ES와 KR-FR 양방향 이국어 사전을 구축할 수 있다. 본 논문에서 제안한 방법으로 실험해본 결과 최고 85%(ES${\rightarrow}$KR)의 정확도를 얻을 수 있었다.
일반적으로 영어를 한국어로 번역할 때, 대부분의 영어 명사 어휘들은 해당 어휘가 사용되는 문맥에 따라 다양한 한국어 명사로 번역될 수 있다. 따라서 영어 원문이 갖는 의미를 손실 없이 번역문으로 전달하기 위해서는 문맥에 맞는 올바른 한국어 대역어를 선택할 수 있어야 한다. 본 논문에서는 동사구패턴, 공기 정보에 기반한 의미벡터, 공기 품사 정보 및 한국어 문맥 통계 정보 등의 다양한 지식을 사용하여 영어 명사 어휘의 대역어를 올바로 선택하는 방안을 제공한다. 동사구 패턴은 사전과 코퍼스를 사용하여 구축되었으며, 의미 벡터는 영어 어휘가 특정 한국어 어휘로 번역될 때 공기하는 정보들의 조건부 확률을 나타낸다. 한국어 문맥 통계 정보는 한국어 코퍼스로부터 추출된 N-그램 정보를 나타내며, 품사 공기 정보는 대역어 선택 모호성을 지니는 영어 어휘와 통계적으로 깊은 관련성을 지니는 품사를 나타낸다. 마지막으로 본 논문에서 제안한 대역어 선택 모호성 해소 방안을 평가하기 위한 실험을 수행하였으며, 실험 결과, 제안하는 방법이 기존의 방법보다 성능이 좋다는 것을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.