• Title/Summary/Keyword: 무한에너지

Search Result 154, Processing Time 0.02 seconds

A Study on the Efficiency Improvement Method of Photovoltaic System Using DC-DC Voltage Regulator (DC-DC 전압 레귤레이터를 이용한 태양광전원의 효율향상 방안에 관한 연구)

  • Tae, Donghyun;Park, Jaebum;Kim, Miyoung;Choi, Sungsik;Kim, Chanhyeok;Rho, Daeseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.704-712
    • /
    • 2016
  • Recently, the installation of photovoltaic (PV) systems has been increasing due to the worldwide interest in eco-friendly and infinitely abundant solar energy. However, the output power of PV systems is highly influenced by the surrounding environment. For instance, a string of PV systems composed of modules in series may become inoperable under cloudy conditions or when in the shade of a building. In other words, under these conditions, the existing control method of PV systems does not allow the string to be operated in the normal way, because its output voltage is lower than the operating range of the grid connected inverter. In order to overcome this problem, we propose a new control method using a DC-DC voltage regulator which can compensate for the voltage of each string in the PV system. Also, based on the PSIM S/W, we model the DC-DC voltage regulator with constant voltage control & MPPT (Maximum Power Point Tracking) control functions and 3-Phase grid connected inverter with PLL (Phase-Locked Loop) control function. From the simulation results, it is confirmed that the present control method can improve the operating efficiency of PV systems by compensating for the fluctuation of the voltage of the strings caused by the surrounding conditions.

Ultrasonic Wave Propagation Analysis for Damage Detection in Heterogeneous Concrete Materials (콘크리트 내부결함 탐지를 위한 초음파 전파 해석)

  • Jung, Hwee Kwon;Rhee, Inkyu;Kim, Jae-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.4
    • /
    • pp.225-235
    • /
    • 2020
  • Ultrasonic investigation of damage detection has been widely used for non-destructive testing of various concrete structures. This study focuses on damage detection analysis with the aid of wave propagation in two-phase composite concrete with aggregate (inclusion) and mortar (matrix). To fabricate a realistic simulation model containing a variety of irregular aggregate shapes, the mesh generation technique using an image processing technique was proposed. Initially, the domains and boundaries of the aggregates were extracted from the digital image of a typical concrete cut-section. This enables two different domains: aggregates and mortar in heterogeneous concrete sections, and applied the grids onto these domains to discretize the model. Subsequently, finite element meshes are generated in terms of spatial and temporal requirements of the model size. For improved analysis results, all meshes are designed to be quadrilateral type, and an additional process is conducted to improve the mesh quality. With this simulation model, wave propagation analyses were conducted with a central frequency of 75 kHz of the Mexican hat incident wave. Several void damages, such as needle-shaped cracks and void-shaped holes, were artificially introduced in the model. Finally, various formats of internal damage were detected by implementing energy mapping based signal processing.

Design Optimization of Duplex Burnable Poison Rods and Feasibility Evaluation for Core Design (이중구조 가연성독봉 설계안의 최적화 및 노심 핵설계 타당성 평가)

  • Yoon Seok-Kyun;Lee Dae-Jin;Kim Myung-Hyun
    • Journal of Energy Engineering
    • /
    • v.13 no.4
    • /
    • pp.242-258
    • /
    • 2004
  • The duplex burnable poison absorbers concept was suggested by Korea Atomic Energy Research Institute. This BP rod is composed of inner region of natural U-Gd$_2$O$_3$ and outer shell of enriched UO$_2$-Er$_2$O$_3$. It is expected that this burnable absorber has same reactivity control capability with gadolinia burnable absorber used in extened fuel cycle. In order to evaluate the nuclear feasibility of duplex BPs, the nuclear design characteristics were compared with that of four types of burnable absorbers; gadolinia, erbia, IFBA, dysprosia duplex BP on 24 months fuel cycle for Korean Standard Nuclear Power plants. According to the evaluation results of nuclear characteristics, the duplex BPs were better than other BPs on k-infinitives, reactivity holddown worth (RHW), pin power peaking and moderator temperature coefficient (MTC). The possibility of nuclear core design was also confirmed based on the optimized fuel assemblies which were searched for a sensitivity analysis. Characteristics of core design with duplex BPs was compared with that of reference core with gadolinia BPs for cycle length, power peaking and MTC. The duplex BP core had a little longer cycle length by 4 to 7 days because of increased amount of fissile in enriched uranium at the outer shell of duplex BP In case of power peaking F$\_$Q/ of duplex BP core was reduced from 1.5773 to 1.5335. MTC was also less -0.48 pcm/C than that of reference core. Finally, evaluation of fuel cycle economy was performed for the manufacturing feasibility test and fuel cost evaluation with duplex BPs. Fuel cycle economy of duplex BP core almost was equivalent with that of gadolinia BP core.

Experimental Study on Autoignition of Superabsorbent Polymers (고흡수성 중합물질의 자연발화에 대한 실험적 연구)

  • Jong-Man Heo;Jae-Wook Choi
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.2
    • /
    • pp.280-291
    • /
    • 2023
  • Purpose: As fire accidents happen at the production and storage sites of superabsorbent polymers for convenience of daily life, an experimental study was conducted to secure basic data to establish practical preventive measures against them. Method: The sample container (20cm width × 20cm length) was made into a rectangular cuboid with the heights of 3cm, 5cm, 7cm, and 14cm, respectively, to allow access to the infinite flat plane. The front and back of the container were covered with a 300-mesh stainless steel mesh for one-dimensional heat transfer. The sample container was placed in the center of the thermostatic bath, which was heated to a predetermined temperature by setting the thermostat program in advance, and it was determined to be 'ignited' when the central temperature of the sample rose by more than 20℃ above the set temperature, and "unignited" when it was maintained at an approximate value of the set temperature. Result: The critical autoignition temperature was calculated to be 217.5℃ when the height of the sample container was 3 cm, 212.5℃ when it was 5 cm, 202.5℃ when it was 7cm, and 187.5℃ when it was 14cm. The ignition induction time to reach the maximum temperature was 34hours for 3cm, 76hours for 5cm, 143hours for 7cm, and 318hours for 14cm. Conclusion: ① As the size of the container increased, the autoignition temperature decreased and the induction time to reach the maximum temperature increased. ② An apparent activation energy was calculated to be 44.92kcal/mol, with a correlation of 96.93%.

Treatment of Cu(II)-EDTA using Solar/$TiO_2$ Photocatalysis (태양광/$TiO_2$ 광산화를 이용한 Cu(II)-EDTA의 제거)

  • Shin, In-Soo;Lee, Seung-Mok;Yang, Jae-Kyu;Shin, Won-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.163-169
    • /
    • 2005
  • Photocatalytic oxidation of Cu(II)-EDTA has been studied using solar/$TiO_2$ photocatalysis as an energy source. Photocatalysis efficiency on the treatment of Cu(II)-EDTA was investigated using different types of solar collectors as well as by variation of the angles of solar collector solar light intensities, flow rates, and areas of solar collector. effect of $H_2O_2$ and types of $TiO_2$ catalyst on the treatment of Cu(II)-EDTA was also investigated. Removal of Cu(II) and DOC was favorable with a hemispherical collector than with a flat collector Removal of Cu(II) and DOC increased with increasing angles of solar collector up to $38^{\circ}$. Slurry type $TiO_2$ showed four-times higher removal efficiency than immobilized type $TiO_2$. Removal of both Cu(II) and DOC at a clear sky of solar light intensity ranging from 0.372 to $2.265\;mW/cm^2$ was greater than removal at a cloudy day of solar light intensity ranging from 0.038 to $1.129\;mW/cm^2$. From the result of this research that the removal efficiency of Cu(II) and DOC increased as the solar light intensity increased, it can be inferred that quantum yield in the destruction of Cu(II)-EDTA may directly related with the solar light intensity. Removal of Cu(II) increased as increasing the area of solar collector and was similar at lower flow rates white removal of Cu(II) was interfered at higher flow rates. When immobilized $TiO_2$ was used, removal efficiency of Cu(II) increased in the presence of $H_2O_2$ while negligible effect was found in the use of $TiO_2$ slurry.

Direct Time Domain Method for Nonlinear Earthquake Response Analysis of Dam-Reservoir Systems (댐-호소계 비선형 지진응답의 직접시간영역 해석기법)

  • Lee, Jin-Ho;Kim, Jae-Kwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.11-22
    • /
    • 2010
  • An analysis method is proposed for the transient linear or nonlinear analysis of dynamic interactions between a flexible dam body and reservoir impounding compressible water under earthquake loadings. The coupled dam-reservoir system consists of three substructures: (1) a dam body with linear or nonlinear behavior; (2) a semi-infinite fluid region with constant depth; and (3) an irregular fluid region between the dam body and far field. The dam body is modeled with linear and/or nonlinear finite elements. The far field is formulated as a displacement-based transmitting boundary in the frequency domain that can radiate energy into infinity. Then the transmitting boundary is transformed for the direct coupling in the time domain. The near field region is modeled as a compressible fluid contained between two substructures. The developed method is verified and applied to various earthquake response analyses of dam-reservoir systems. Also, the method is applied to a nonlinear analysis of a concrete gravity dam. The results show the location and severity of damage demonstrating the applicability to the seismic evaluation of existing and new dams.

Thermal Stability and Critical Ignition Temperature of RPF (RPF의 열적 안정성과 한계발화온도)

  • Lim, Woo-Sub;Choi, Jae-Wook
    • Fire Science and Engineering
    • /
    • v.22 no.1
    • /
    • pp.99-104
    • /
    • 2008
  • It is important to understand thermal characteristic as a method to estimate the new materials, because spontaneous ignition characterized by causing combustion in the low temperature without ignition source. If can not find out the thermal characteristics of materials, it is frequent that causes of fires could not be found. The danger level of spontaneous ignition material should be estimated and by closely studying its thermal characteristic. However, RPF(Refuse Paper & Plastic Fuel) is a solid matter and getting increasesa year by year because it is an economy profit as alternative energy for limited fossil fuels. Some time RPF occur a fire in the cases of its production process and conservation. Therefore study for thermal stability and critical ignition temperature of RPF was so imperative that the experiment by means of Bombe Calorimeter, TG-DTA, MS80, SIT-II, and Wire Basket Test was implemented. As a result, RPF had a caloric value 26.4-28.3 MJ/kg, and its initial pyrolysis temperature was $192^{\circ}C$ at heating rate 2 K/min. With the result of analysis by MS 80 which is an instrument measuring microscopic calory, pure RPF not containing water has higher caloric value than RPF containing 20% water. Also, SIT-II which is an instrument of insulated auto-ignition was ignited by $118.5^{\circ}C$. This temperature is lower than that of Wire Basket Test. The critical ignition temperature was calculated by Frank-Kamenetskii equation can cause ignition at $80^{\circ}C$ when conserved in the height of 10 m by the standard of infinity slab.

Nonlinear Earthquake Response Analysis of a Soil-Structure Interaction System Subjected to a Three-Directional Ground Motion (3축 방향 지반운동이 작용하는 지반-구조물 상호작용계의 비선형 지진응답 해석)

  • Lee, Jin Ho;Kim, Jae Kwan;Kim, Jung Han
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.4
    • /
    • pp.317-325
    • /
    • 2016
  • In this study, nonlinear earthquake responses of a soil-structure interaction(SSI) system which is subjected to a three-directional ground motion are examined. The structure and the near-field region of soil, where the geometry is irregular, the material properties are heterogeneous, and nonlinear dynamic responses are expected, are modeled by nonlinear finite elements. On the other hand, the infinite far-field region of soil, which has a regular geometry and homogeneous material properties and dynamic responses is assumed linearly elastic, is represented by three-dimensional perfectly matched discrete layers which can radiate elastic waves into infinity efficiently. Nonlinear earthquake responses of the system subjected to a three-directional ground motion are calculated with the numerical model. It is observed that the dynamic responses of a SSI system to a three-directional motion have a predominant direction according to the characteristics of the ground motion. The responses must be evaluated using precise analysis methods which can consider nonlinear behaviors of the system accurately. The the method employed in this study can be applied easily to boundary nonlinear problems as well as material nonlinear problems.

An Experimental Study on the Mechanical Properties of HPFRCCs Reinforced with the Micro and Macro Fibers (마이크로 및 매크로 섬유에 의해 보강된 고인성 시멘트 복합재료의 역학적 특성에 관한 실험적 연구)

  • Kim Moo-Han;Kim Jae-Hwan;Kim Yong-Ro;Kim Young-Duck
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.263-271
    • /
    • 2005
  • HPFRCC(High Performance Fiber Reinforced Cementitious Composite) is a class of FRCCs(Fiber Reinforced Cementitious Composites) that exhibit multiple cracking. Multiple cracking leads to improvement in properties such as ductility, toughness, fracture energy, strain hardening, strain capacity, and deformation capacity under tension, compression, and bending. These improved properties of HPFRCCs have triggered unique and versatile structural applications, including damage reduction, damage tolerance, energy absorption, crack distribution, deformation compatibility, and delamination resistance. These mechanical properties of HPFRCCs become different from the kinds and shapes of used fiber, and it is known that the effective size of fiber in macro crack is different from that in micro crack. This paper reports an experimental findings on the mechanical properties of HPFRCCs reinforced with the micro fiber(PP50, PVA100 and PVA200) and macro fiber(PVA660, SF500). Uniaxial compressive tests and three point bending tests are carried out in order to compare with the mechanical properties of HPFRCCs reinforced with micro fibers or hybrid fibers such as compressive strength, ultimate bending stress, toughness, deformation capacity and crack pattern under bending, etc.,

Influence of Temperature and Affinity of Disperse Dye on Dyeing of PET(Polyethylene Terephthalate) Microfiber (PET 초극세사 염색에서 분산염료의 친화력과 온도 의존성)

  • Lee, Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.532-540
    • /
    • 2019
  • PET microfibers with various diameters (0.5, 0.2, 0.06, and 0.01 dpf) were dyed with a dispersed dye (C.I. Disperse Blue 56) at various temperatures. The dyeing process was conducted under infinite dyebath conditions at constant temperatures. The effects of the dyeing temperature and diameter on the partition coefficient, affinity, and diffusion coefficient of disperse dyes were studied. The curve of isotherms was fitted well to Nernst-type model in a large range of initial dye concentrations. At the same temperature, the partition coefficient and affinity decreased with increasing sample diameter due to the increase in surface area. At all deniers, the partition coefficient and affinity decreased with increasing temperature because the dyeing process is an exothermic reaction. In addition, the decrease in radius of the sample gives rise to a decrease in the heat of dyeing. The fine diameter of the sample resulted in an increased surface area but decreased space between the microfibers. Consequently, decreasing the diameter of the microfibers leads to a decrease in the diffusion coefficient. At the same diameter, the diffusion coefficient increased with increasing temperature because of rapid dye movement and the large free volume of the sample inside. In addition, thermal dependence of the diffusion coefficient increased when the diameter of the sample increased.