• 제목/요약/키워드: 무한궤도차량

검색결과 25건 처리시간 0.023초

고속 무한궤도 차량용 변속제어기 진단 알고리즘 분석 (Analysis of Diagnosis Algorithm Implemented in TCU for High-Speed Tracked Vehicles)

  • 정규홍
    • 드라이브 ㆍ 컨트롤
    • /
    • 제15권4호
    • /
    • pp.30-38
    • /
    • 2018
  • Electronic control units (ECUs) are currently popular, and have evolved further towards the high-end application of autonomous vehicles in the automotive industry. Such digital technologies have also become widespread, in agriculture and construction equipment. Likewise, transmission control of high-speed tracked vehicles is based on the transmission control unit (TCU), performing complex gear change control functions, and diagnostic algorithms (a TCU's self-diagnostic and reporting capability of malfunction data through CAN communication). Since all functions of TCU are implemented by embedded-software, it is hardly possible to analyze specifications by reverse engineering. In this paper a real-time transmission simulator adaptable to TCU is presented, for analysis of diagnosis algorithm and standards. Signal simulation circuits are deliberately designed considering electrical characteristics of TCU inputs and various analysis tools, such as analog input auto scan function, and global output enable switch, are implemented in software. Test results from hardware-in-the-loop simulator verify tolerance time for each error, as well as cause of fault, error reset conditions.

통계기법을 이용한 무한궤도형 군용 장갑차량의 신뢰성, 가용성 및 정비성 분석 사례 연구 (A case study on RAM analysis for a military full-tracked armored vehicle using a statistical method)

  • 김상원
    • 경영과학
    • /
    • 제11권1호
    • /
    • pp.117-128
    • /
    • 1994
  • This paper describes a case study on the analysis of RAM(Reliability, Availability, and Maintainability) factors obtained from the Endurance-Test for a military full-tracked armored vehicle. In analysing RAM factors of the vehicle we used such a statistical technique as method of Maximum-Likelihood for estimating parameters.

  • PDF

무한궤도 로봇의 주행 해석에 관한 연구 (A Study on the Driving Analysis of Tracked Robot)

  • 이상호;고진석;정연하;신현수;김창준;이승열;한창수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.867-872
    • /
    • 2007
  • A tracked robot has an excellent mobility on the rough terrain. Especially, a tracked robot for driving has to get structural function in the every field. In this paper, we propose a tracked robot of a small rear wheel typed. Also compared and estimated a driving analysis about the tracked robot in considered the general environment. Compared 2 models are different in size of rear wheels but front wheels are same size each other. From comparing model, the radius of front wheels is 100mm and the radius of rear wheels is 100mm. The radius of front wheels is 100mm and the radius of rear wheels is 70mm from proposed tracked robot. Depend on these radiuses of values we are known driving torque values of an actuating wheel using Recurdyn. And estimated stress of rotated track by an actuating wheel using Ansys. finally, the designed robot has size of $600mm\;{\times}\;330mm\;{\times}\;150mm$, weight is 27kg and the tracked robot is actuated by 2 geared DC motors.

  • PDF

연약지반 무한궤도차량의 다물체 동적거동 해석 (Multibody Dynamic Analysis of a Tracked Vehicle on Soft Cohesive Soil)

  • 김형우;홍섭;최종수;여태경
    • 한국해양공학회지
    • /
    • 제21권1호
    • /
    • pp.69-74
    • /
    • 2007
  • This paper is concerned about the dynamic analysis of an underwater test miner, which operates on cohesive soil. The test miner consists of tracked vehicles and a pick-up device. The motion of the pick-up device, relative to the vehicle chassis, is controlled by two pairs of hydraulic cylinders. The test miner is modeled by means of commercial software. A terramechanics model of cohesive soft soil is implemented with the software and applied to a dynamic analysis of the test miner model. The dynamic responses of the test miner are studied with respect to four different types of terrain conditions.

해저 연약지반 주행성능 실험기법 연구 (II) : 직진주행성능시험 (Experimental Technique for Trafficability on Soft Benthic Terrain (II) : Straight-line Motion Test of Tracked Vehicle)

  • 최종수;홍섭;김형우;이태희
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.116-120
    • /
    • 2003
  • To study the trafficability on soft and cohesive benthic terrain, a tracked vehicle model($670mm(L){\times}750mm(B_c)$) is designed and tested. The pitch and chevron angle of grouser, weight and center of gravity of vehicle, and drawbar pull force are chosen as experimental variables. Slip, sinkage and inclined angle of vehicle are picked as performance values. Strength of soil is considered as noise factor. A preliminary straight-line motion test is performed. Then, DOE(Design of Experiment) is discussed for further research.

  • PDF

수치해석을 이용한 연약지반 4열 강체 무한궤도 차량의 최적 선회비 연구 (Study on Steering Ratio of Four-Row Rigid Tracked Vehicle on Extremely Cohesive Soft Soil Using Numerical Simulation)

  • 김형우;이창호;홍섭;최종수;여태경;민천홍
    • 한국해양공학회지
    • /
    • 제27권6호
    • /
    • pp.81-89
    • /
    • 2013
  • This paper considers the steering characteristics of a four-row tracked vehicle crawling on extremely cohesive soft soil, where each side is composed of two parallel tracks. The four-row tracked vehicle (FRTV) is assumed to be a rigid body with 6-DOF. A dynamic analysis program for the tracked vehicle is developed using the Newmark-${\beta}$ method based on an incremental-iterative scheme. A terra-mechanics model of an extremely cohesive soft soil is implemented in the form of the relationships of the normal pressure to the sinkage, the shear resistance to the shear displacement, and the dynamic sinkage to the shear displacement. In order to investigate the steering characteristics of the four-row tracked vehicle, a series of dynamic simulations is conducted with respect to the distance between the left and right tracks (pitch), steering ratios, driving velocity, reference track velocity, lengths of the tracks, and properties of the cohesive soft soil. Through these numerical simulations, the possibility of using a kinematic steering ratio is explored.

점착성 연약지반 주행차량의 동적거동 연구 (A Study on Dynamic Responses of Tracked Vehicle on Extremely Soft Cohesive Soil)

  • 김형우;홍섭;최종수
    • Ocean and Polar Research
    • /
    • 제26권2호
    • /
    • pp.323-332
    • /
    • 2004
  • This paper concerns about a study on dynamic responses of tracked vehicle on soft cohesive soil. For dynamic analyses of tracked vehicle, two different models were adopted, i.e. a single-body model and a multi-body model. The single-body vehicle model was assumed as a rigid body with 6-dof. The multi-body vehicle was modeled by using a commercial software, RecurDyn-LM. For the both models properties of cohesive soft soil were modeled by means of three relationships: pressure to sinkage, shear displacement to shear stress, and shear displacement to dynamic sinkage. Traveling performances of the two tracked vehicle models were compared through dynamic analyses in time domain.

직교행렬 실험계획법에 의한 해저연약지반 선회성능실험 연구 (An Experimental Study on Steering Performance of Seafloor Tracked Vehicle Based on Design Of Experiment Using Orthogonal Array)

  • 최종수;홍섭;김형우
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 추계학술대회 논문집
    • /
    • pp.250-253
    • /
    • 2003
  • This paper concerns about an experimental investigation about steering performance of tracked vehicle on extremely soft soil based on DOE(Design Of Experiment) using L8 orthogonal Array. A tracked vehicle model with principal dimensions of $0.9m{\times}0.8m{\times}0.4m$ and weight 167kg was constructed with a pair of driving chain links driven by two AC-servo motors. The tracks are configured with detachable grousers, the span of which can be varied. Deep seabed was simulated by means of bentonite-water mixture in a soil bin of $6.0m{\times}3.7m{\times}0.7m$. Turning radii of vehicle and torques of motors were measured with respect to experimental variables; steering ratio, driving speed, grouser chevron angle, grouser span, grouser height. The effects of experiment variables on steering performance are evaluated.

  • PDF

반응표면법에 의한 연약지반 차량 거동의 통계적 분석 및 예측 (Statistical Analysis and Prediction for Behaviors of Tracked Vehicle Traveling on Soft Soil Using Response Surface Methodology)

  • 이태희;정재준;홍섭;김형우;최종수
    • 한국해양공학회지
    • /
    • 제20권3호
    • /
    • pp.54-60
    • /
    • 2006
  • For optimal design of a deep-sea ocean mining collector system, based on self-propelled mining vehicle, it is imperative to develop and validate the dynamic model of a tracked vehicle traveling on soft deep seabed. The purpose of this paper is to evaluate the fidelity of the dynamic simulation model by means of response surface methodology. Various statistical techniques related to response surface methodology, such as outlier analysis, detection of interaction effect, analysis of variance, inference of the significance of design variables, and global sensitivity analysis, are examined. To obtain a plausible response surface model, maximum entropy sampling is adopted. From statistical analysis and prediction for dynamic responses of the tracked vehicle, conclusions will be drawn about the accuracy of the dynamic model and the performance of the response surface model.

심해저 광물자원 채광시스템의 통합거동 해석 (Total Dynamic Analysis of Deep-Seabed Integrated Mining System)

  • 김형우;홍섭;최종수;여태경
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.311-314
    • /
    • 2006
  • This paper concerns about total dynamic analysis of integrated mining system. This system consists of vertical steel pipe, intermediate buffer station, flexible pipe and self-propelled miner. The self-propelled miner and buffer are assumed as rigid-body of 6-dof. Discrete models of vertical steel pipe and flexible pipe are adopted, which are obtained by means of lumped-parameter method. The motion of mining vessel is not considered. Instead, the motion of mining vessel is taken into account in form of various boundary conditions (e.g. forced excitation in slow motion and/or fast oscillation and so on). A terramechanics model of extremely soft cohesive soil is applied to the self-propelled miner. The hydrodynamic forces and moments are included in the dynamic models of vehicle and lifting pipe system. Hinged and fixed constraints are used to define the connections between sub-systems (vertical steel pipe, buffer, flexible pipe, miner). Equations of motion of the coupled model are derived with respect to the each local coordinates system. Four Euler parameters are used to express the orientations of the sub-systems. To solve the equations of motion of the total dynamic model, an incremental-iterative formulation is employed. Newmark-b method is used for time-domain integration. The total dynamic responses of integrated mining system are investigated.

  • PDF