• Title/Summary/Keyword: 무참조

Search Result 10, Processing Time 0.028 seconds

No-Reference Image Quality Assessment Using Complex Characteristics of Shearlet Transform (쉬어렛 변환의 복소수 특성을 이용하는 무참조 영상 화질 평가)

  • Mahmoudpour, Saeed;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.21 no.3
    • /
    • pp.380-390
    • /
    • 2016
  • The field of Image Quality Measure (IQM) is growing rapidly in recent years. In particular, there was a significant progress in No-Reference (NR) IQM methods. In this paper, a general-purpose NR IQM algorithm is proposed based on the statistical characteristics of natural images in shearlet domain. The method utilizes a set of distortion-sensitive features extracted from statistical properties of shearlet coefficients. A complex version of the shearlet transform is employed to take advantage of phase and amplitude features in quality estimation. Furthermore, since shearlet transform can analyze the images at multiple scales, the effect of distortion on across-scale dependencies of shearlet coefficients is explored for feature extraction. For quality prediction, the features are used to train image classification and quality prediction models using a Support Vector Machine (SVM). The experimental results show that the proposed NR IQM is highly correlated with human subjective assessment and outperforms several Full-Reference (FR) and state-of-art NR IQMs.

No-reference PSNR estimation of H.264/AVC video (H.264/AVC 영상의 무참조 PSNR 추정기법)

  • Ryu, Ji-Woo;Lee, Seon-Oh;Sim, Dong-Gyu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.07a
    • /
    • pp.276-277
    • /
    • 2010
  • 비디오 전송시스템에서 사용자가 시청하는 비디오의 화질을 측정하는 것은 중요한 작업이다. 압축된 비디오 스트림에서는 원본 영상이 없어 PSNR을 구할 수 없기 때문에 비디오 스트림 내 정보의 통계적 특성을 이용한 무참조(no-reference) PSNR 추정기법이 사용된다. 그러나 이 알고리즘은 인터 프레임에서의 성능이 매우 떨어지는 단점이 있기 때문에 신뢰도가 떨어지며 ML방법을 이용해 이 문제를 개선한 알고리즘이 있지만 복잡도가 증가하여 상용화에는 부적합하다. 본 논문에서는 이전 프레임의 PSNR과 인터 블록의 통계적 특성을 고려한 새로운 알고리즘을 제안하여 복잡도의 증가 없이 인터 프레임에서의 PSNR 추정 성능을 향상시켰다.

  • PDF

No-reference Perceptual Quality Assessment of Digital Image (디지털 영상의 인지적 무참조 화질 평가 방법)

  • Lim, Jin-Young;Chang, Ho-Seok;Kang, Dong-Wook;Kim, Ki-Doo;Jung, Kyeong-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.13 no.6
    • /
    • pp.849-858
    • /
    • 2008
  • In this paper, a no-reference perceptual metric is proposed for image quality assessment. It measures the amount of overall blockiness and blurring of the image and evaluates the amount of ringing, staircase, and mosaic noises around the strong edges. Finally, the individual scores are combined by a fuzzy integral to generate the final quality score of the image. The quality scores obtained by the proposed algorithm show strong relationship with the MOS(Mean Opinion Score) values by experts.

Comparison of Objective Metrics and 3D Evaluation Using Upsampled Depth Map (깊이맵 업샘플링을 이용한 객관적 메트릭과 3D 평가의 비교)

  • Mahmoudpou, Saeed;Kim, Manbae
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2014.11a
    • /
    • pp.156-157
    • /
    • 2014
  • 본 논문에서는 깊이맵 업샘플링을 이용하여 객관적 메트릭과 3D 주관적 평가 사이의 관계를 조사한다. 전자의 경우, 다양한 참조(full-reference) 및 무참조(no-reference) 평가도구가 깊이맵의 품질을 측정하기위해 적용되고, 3D평가는 주관적 평가로 얻는다. 이 두 개의 결과는 세 가지의 상관계수를 이용하여 상호 관련성을 찾은 후에, 최적으로 주관평가에 근접한 객관적 메트릭을 얻는다.

  • PDF

No-Reference Sports Video-Quality Assessment Using 3D Shearlet Transform and Deep Residual Neural Network (3차원 쉐어렛 변환과 심층 잔류 신경망을 이용한 무참조 스포츠 비디오 화질 평가)

  • Lee, Gi Yong;Shin, Seung-Su;Kim, Hyoung-Gook
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.12
    • /
    • pp.1447-1453
    • /
    • 2020
  • In this paper, we propose a method for no-reference quality assessment of sports videos using 3D shearlet transform and deep residual neural networks. In the proposed method, 3D shearlet transform-based spatiotemporal features are extracted from the overlapped video blocks and applied to logistic regression concatenated with a deep residual neural network based on a conditional video block-wise constraint to learn the spatiotemporal correlation and predict the quality score. Our evaluation reveals that the proposed method predicts the video quality with higher accuracy than the conventional no-reference video quality assessment methods.

3D Visual Attention Model and its Application to No-reference Stereoscopic Video Quality Assessment (3차원 시각 주의 모델과 이를 이용한 무참조 스테레오스코픽 비디오 화질 측정 방법)

  • Kim, Donghyun;Sohn, Kwanghoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.4
    • /
    • pp.110-122
    • /
    • 2014
  • As multimedia technologies develop, three-dimensional (3D) technologies are attracting increasing attention from researchers. In particular, video quality assessment (VQA) has become a critical issue in stereoscopic image/video processing applications. Furthermore, a human visual system (HVS) could play an important role in the measurement of stereoscopic video quality, yet existing VQA methods have done little to develop a HVS for stereoscopic video. We seek to amend this by proposing a 3D visual attention (3DVA) model which simulates the HVS for stereoscopic video by combining multiple perceptual stimuli such as depth, motion, color, intensity, and orientation contrast. We utilize this 3DVA model for pooling on significant regions of very poor video quality, and we propose no-reference (NR) stereoscopic VQA (SVQA) method. We validated the proposed SVQA method using subjective test scores from our results and those reported by others. Our approach yields high correlation with the measured mean opinion score (MOS) as well as consistent performance in asymmetric coding conditions. Additionally, the 3DVA model is used to extract information for the region-of-interest (ROI). Subjective evaluations of the extracted ROI indicate that the 3DVA-based ROI extraction outperforms the other compared extraction methods using spatial or/and temporal terms.

A New Image Processing Scheme For Face Swapping Using CycleGAN (순환 적대적 생성 신경망을 이용한 안면 교체를 위한 새로운 이미지 처리 기법)

  • Ban, Tae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.9
    • /
    • pp.1305-1311
    • /
    • 2022
  • With the recent rapid development of mobile terminals and personal computers and the advent of neural network technology, real-time face swapping using images has become possible. In particular, the cycle generative adversarial network made it possible to replace faces using uncorrelated image data. In this paper, we propose an input data processing scheme that can improve the quality of face swapping with less training data and time. The proposed scheme can improve the image quality while preserving facial structure and expression information by combining facial landmarks extracted through a pre-trained neural network with major information that affects the structure and expression of the face. Using the blind/referenceless image spatial quality evaluator (BRISQUE) score, which is one of the AI-based non-reference quality metrics, we quantitatively analyze the performance of the proposed scheme and compare it to the conventional schemes. According to the numerical results, the proposed scheme obtained BRISQUE scores improved by about 4.6% to 14.6%, compared to the conventional schemes.

Evaluation of Performance and No-reference-based Quality for CT Image with ADMIRE Iterative Reconstruction Parameters: A Pilot Study (ADMIRE 반복적 재구성 파라메터에 따른 CT 영상의 특성 및 무참조 기반 화질 평가: 선행연구)

  • Bo-Min Park;Yoo-Jin Seo;Seong-Hyeon Kang;Jina Shim;Hajin Kim;Sewon Lim;Youngjin Lee
    • Journal of radiological science and technology
    • /
    • v.47 no.3
    • /
    • pp.175-182
    • /
    • 2024
  • Advanced modeled iterative reconstruction (ADMIRE) represents a repetitive reconstruction method that can adjust strength and kernel, each of which are known to affect computed tomography (CT) image quality. The aim of this study was to quantitatively analyze the noise and spatial resolution of CT images according to ADMIRE control factors. Patient images were obtained by applying ADMIRE strength 2 and 3, and kernel B40 and B59. For quantitative evaluations, the noise level, spatial resolution, and overall image quality were measured using coefficient of variation (COV), edge rise distance (ERD), and natural image quality evaluation (NIQE). The superior values for the average COV, ERD, and NIQE results were obtained for the ADMIRE reconstruction conditions of ADMIRE 2 + B40, ADMIRE 3 + B59, and ADMIRE3 + B59. NIQE, which represents the overall image quality based on no-reference, was about 6.04 when using ADMIRE 3 + B59, showing the best result among the reconstructed image acquisition conditions. The results of this study indicate that the ADMIRE strength and kernel chosen for use in ADMIRE reconstruction have a significant impact on CT image quality. This highlights the importance of adjusting to the control factors in consideration of the clinical environment.

No-Reference Visibility Prediction Model of Foggy Images Using Perceptual Fog-Aware Statistical Features (시지각적 통계 특성을 활용한 안개 영상의 가시성 예측 모델)

  • Choi, Lark Kwon;You, Jaehee;Bovik, Alan C.
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.4
    • /
    • pp.131-143
    • /
    • 2014
  • We propose a no-reference perceptual fog density and visibility prediction model in a single foggy scene based on natural scene statistics (NSS) and perceptual "fog aware" statistical features. Unlike previous studies, the proposed model predicts fog density without multiple foggy images, without salient objects in a scene including lane markings or traffic signs, without supplementary geographical information using an onboard camera, and without training on human-rated judgments. The proposed fog density and visibility predictor makes use of only measurable deviations from statistical regularities observed in natural foggy and fog-free images. Perceptual "fog aware" statistical features are derived from a corpus of natural foggy and fog-free images by using a spatial NSS model and observed fog characteristics including low contrast, faint color, and shifted luminance. The proposed model not only predicts perceptual fog density for the entire image but also provides local fog density for each patch size. To evaluate the performance of the proposed model against human judgments regarding fog visibility, we executed a human subjective study using a variety of 100 foggy images. Results show that the predicted fog density of the model correlates well with human judgments. The proposed model is a new fog density assessment work based on human visual perceptions. We hope that the proposed model will provide fertile ground for future research not only to enhance the visibility of foggy scenes but also to accurately evaluate the performance of defog algorithms.

Comparison of Objective Metrics and 3D Evaluation Using Upsampled Depth Map (깊이맵 업샘플링을 이용한 객관적 메트릭과 3D 평가의 비교)

  • Mahmoudpour, Saeed;Choi, Changyeol;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.20 no.2
    • /
    • pp.204-214
    • /
    • 2015
  • Depth map upsampling is an approach to increase the spatial resolution of depth maps obtained from a depth camera. Depth map quality is closely related to 3D perception of stereoscopic image, multi-view image and holography. In general, the performance of upsampled depth map is evaluated by PSNR (Peak Signal to Noise Ratio). On the other hand, time-consuming 3D subjective tests requiring human subjects are carried out for examining the 3D perception as well as visual fatigue for 3D contents. Therefore, if an objective metric is closely correlated with a subjective test, the latter can be replaced by the objective metric. For this, this paper proposes a best metric by investigating the relationship between diverse objective metrics and 3D subjective tests. Diverse reference and no-reference metrics are adopted to evaluate the performance of upsampled depth maps. The subjective test is performed based on DSCQS test. From the utilization and analysis of three kinds of correlations, we validated that SSIM and Edge-PSNR can replace the subjective test.