• 제목/요약/키워드: 무차원 해석

Search Result 270, Processing Time 0.024 seconds

The Power Spectral Density Characteristics of Lift and Drag Fluctuation on a Heat Exchanger Circular Tube (열교환 단일 원관의 양력과 항력 변동에 따른 PSD 특성 연구)

  • Ha, Ji Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.4
    • /
    • pp.35-40
    • /
    • 2015
  • Heat exchanger tube array in a heat recovery steam generator is exposed to the hot exhaust gas flow and it could cause the flow induced vibration, which could damage the heat exchanger tube array. It is needed for the structural safe operation of the heat exchanger to establish the characteristics of flow induced vibration in the tube array. The researches for the flow induced vibration of typical heat exchangers have been conducted and the nondimensional PSD(Power Spectral Density) function with the Strouhal number, fD/U, had been derived by experimental method. The present study examined the results of the previous experimental researches for the nondimensional PSD characteristics by CFD analysis and the basis for the application of flow induced vibration to the heat recovery steam generator tube array would be prepared from the present CFD analysis. For the previous mentioned purpose, the present CFD analysis introduced a single circular cylinder and calculated with the unsteady laminar flow over the cylinder. The characteristics of vortex shedding and lift and drag fluctuation over the cylinder was investigated. The derived nondimensional PSD was compared with the results of the previous experimental researches and the characteristics of lift and drag PSD over a single circular cylinder was established from the present CFD study.

Acoustic Characteristics of Perforated Pipe in Terms of Nondimensional Wave Number and Porosity (공극관의 음향학적 특성과 수치해석방법)

  • 윤두병;김양한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.42-47
    • /
    • 1992
  • 본 연구에서는 공극관의 실험인자에 대한 특성을 알아보기 위하여 공극관에 입사되는 음파의 파수 k와 공극분포부분들 사이의 거리인 a의 곱으로 나타나는 무차원변수 ka와, 공극관의 단면적에 대한 전체 공극면적의 비로 정의한 공극률을 실험인자로 하여 연구를 진행하였다. 또한 sulivan의 모델을 이용하여 공극관을 모델링하고 이를 컴퓨터를 사용하여 모의 실험을 한 후 실험결과와 비교하였다.

  • PDF

Reliability Analysis of Sloped Coastal Structures against Random Wave Overtopping (월파에 대한 경사식 해안 구조물의 신뢰성 해석)

  • 이철응
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.4
    • /
    • pp.214-223
    • /
    • 2003
  • A reliability analysis is straightforwardly applied to the sloped coastal structures against the random wave overtopping. A reliability function can be directly derived from a empirical formula in which may take into account many variables associated with the random wave overtopping. The probability of failure exceeded the allowable overtopping discharge can be evaluated as a function of dimensionless crest height with some reasonable statistical properties and distribution functions of each random variable. Some differences of probabilities of failure occurred from variations of the slopes of structures as well as types of armour are investigated into quantitatively. Additionally, the effects of the crest width of units placed in front of the concrete cap on the probability of failure may be analyzed. Finally, the sensitivity analyses are carried out with respect to the uncertainties of random variables. It is found that the overall characteristics similar to the known experimental results are correctly represented in this reliability analyses. Also, it should be noted that the probabilities of failure may be quantitatively obtained for several structural and hydraulic conditions, which never assess in the deterministic design method. Thus, it may be possible for determination on the crest height of sloped coastal structures to consider the probability of failure of wave overtopping, by which may be increased the efficiency of practical design.

Forced Convection Cooling Across Rectangular Blocks in a Parallel Channel (블럭이 부착된 수평 유로에서의 강제대류 열전달 해석)

  • 조한승;유재석
    • Journal of Energy Engineering
    • /
    • v.2 no.3
    • /
    • pp.251-257
    • /
    • 1993
  • The purpose of this study is to obtain an improved interpretation of heat transfer phenomena between blocks and fluids in the parallel conducting plates. Flow is two-dimensional, incompressible steady laminar flow over rectangular blocks, representing finite heat source on parallel plate. Heat transfer phenomena, temperature of blocks and heat transfer into the flow field are investigated for different spacings between blocks and Reynolds numbers. Results indicate that Nusselt number on the far upstream corner of the block was higher than that of any part of the block. As Reynolds number and spacings of blocks increased, Nusselt number increased. The distribution of local Nusselt number on the top surface of the conducting plate is similar to the case with insulated plate. Temperature of the block which has heat source in half cubage was approximately twice as high as temperature of the block which has heat source in whole cubage. As Reynolds number and spacings of blocks increased, overall temperature decreased. The peak value of block temperature occurred at position shifted to the right or upper right from center. The maximum temperature of block can be expressed as a function of Reynolds number, spacings between blocks, position of maximum temperature of each block and then it is possible to predict the maximum temperature of blocks.

  • PDF

Natural Frequency Characteristics of a Cylindrical Tank Filled with Bounded Compressible Fluid (압축성 유체로 충진된 원통형 탱크의 고유진동수의 특성)

  • 정경훈;김강수;박근배
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.291-302
    • /
    • 1997
  • This paper presents an analytical method for evaluating the free vibration of a circular cylindrical tank filled with bounded compressible fluid. The analytical method was developed by means of the finite Fourier series expansion method. The compressible fluid motion was determined by means of the linear velocity potential theory. To clarify the validity of the analytical method, the natural frequencies of a circular cylindrical tank with the clamped-clamped boundary condition, and filled with water, were obtained by the analytical method and the finite element method using a comercial ANSYS 5.2 software. Excellent agreement on the natural frequencies of the liquid-filled tank structure was found. The compressiblity and the fluid density effects on the normalized coupled natural frequencies were investigated. The density of fluid affects on all coupled natural frequencies of the tank, whereas the compressibility of fluid affects mainly on the natural frequencies of lower circumferential modes.

  • PDF

Dynamic Optimal Design of Continuous Beams (연속보의 동적 최적설계에 관한 연구)

  • 이병구;오상진;모정만
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.233-242
    • /
    • 1997
  • The main purpose of this paper is to investigate the dynamic optimal design of continuous beams. The computer-aided optimization technique is used to obtain the near-optimal parameters of continuous beam. The computer program is developed to obtain the natural frequency parameters and the forced vibration responses to a transit point load for the continuous beam with variable support spacing, mass and stiffness. The model test data is in good agreement with the computer calculation, which serves to validate the mathematical analysis. The optimization function to describe the design efficiency is defined as a linear combination of four dimensionless span characteristics; the maximum dynamic stress; the stress difference between span segments; the rms deflection under the transit point load; and the total span mass. Studies of three span beams show that the beam with near-optimal parameters can improve design efficiency when compared to a uniform beam with even spacing of the same total span length.

  • PDF

General inflation and bifurcation analysis of rubber balloons (고무풍선의 일반화 팽창 및 분기 해석)

  • Park, Moon Shik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.14-24
    • /
    • 2018
  • Several typical hyper-elastic constitutive models that encompass both conventional and advanced ones were investigated for the application of instability problems, including the biaxial tension of a rubber patch and inflation of spherical or cylindrical balloons. The material models included the neo-Hookean model, Mooney-Rivlin model, Gent model, Arruda-Boyce model, Fung model, and Pucci-Saccomandi model. Analyses can be done using membrane equations with particular strain energy density functions. Among the typical strain energy density functions, Kearsley's bifurcation for the Treloar's patch occurs only with the Mooney-Rivlin model. The inflation equation is so generalized that a spherical balloon and tube balloons can be taken into account. From the analyses, the critical material parameters and limit points were identified for material models in terms of the non-dimensional pressure and inflation volume ratio. The bifurcation was then identified and found for each material model of a balloon. When the finite element method was used for the structural instability problems of rubber-like materials, some careful treatments required could be suggested. Overall, care must be taken not only with the analysis technique, but also in selecting constitutive models, particularly the instabilities.

Numerical Simulation of Self-Compensating Dynamic Balancer in a Rotating Mechanism (수치해석을 통한 자기보상 동적균형기의 작동성 검토)

  • 이종길
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.1
    • /
    • pp.142-151
    • /
    • 1995
  • 회전체의 자동밸런싱을 위하여 고안된 자기보상 동적균형기는 홈이파인 원판에 강구와 저점성유체를 지닌 구조체이다. 유도된 운동방정식으로 부터 자기보상 동적균형기의 작동조건을 조사하기 우하여 수치해석을 통한 동 특성을 검토하였다. 수치해석의 결과에 근거하여 임계속도보다 높은 범위에서는 자기보상 동적균형기는 정상작동을 보여주었다. 임계속도에서는 회전계의 균형이 강구와 점성유체와의 감쇠계수에 의존하였으나 임계속도보다 낮은 범위에서는 어떠한 조건에 대해서도 작동하지 않음을 알 수 있었다. 자동차 및 항공기에도 응용가은한 자기보상 동적균형기의 작동조건들을 본 논문에서 예시하였다.

  • PDF

SPH-Based Wave Tank Simulations (SPH 기법 기반의 파동수조 시뮬레이션)

  • Lee, Sangmin;Kim, Mujong;Ko, Kwonhwan;Hong, Jung-Wuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.1
    • /
    • pp.59-69
    • /
    • 2021
  • Recently, large-scale offshore and coastal structures have been constructed owing to the increasing interest in eco-friendly energy development. To achieve this, precise simulations of waves are necessary to ensure the safe operations of marine structures. Several experiments are required in the field to understand the offshore wave; however, in terms of scale, it is difficult to control variables, and the cost is significant. In this study, numerical waves under various wave conditions are produced using a piston-type wavemaker, and the produced wave profiles are verified by comparing with the results from a numerical wave tank (NWT) modeled using the smoothed particle hydrodynamics (SPH) method and theoretical equations. To minimize the effect by the reflected wave, a mass-weighted damping zone is set at the right end of the NWT, and therefore, stable and uniform waves are simulated. The waves are generated using the linear and Stokes wave theories, and it is observed that the numerical wave profiles calculated by the Stokes wave theory yield high accuracy. When the relative depth is smaller than two, the results show good agreement irrespective of the wave steepness. However, when the relative depth and wave steepness are larger than 2 and 0.04, respectively, the errors are negligible if the measurement position is close to the excitation plate. However, the error is 10% or larger if the measurement position is away from the excitation location. Applicable target wave ranges are confirmed through various case studies.

Transient Dynamic Stress Analysis of Transversely Isotropic Cylinders Subject to Longitudinal Impact (충격압축하중을 받는 횡등방성 중실축의 과도 동적해석)

  • Oh, Guen;Sim, Woo-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.521-532
    • /
    • 2007
  • Elastic wave propagations in the semi-infinite transversely isotropic cylinder under various kinds of longitudinal impact loads are analyzed using the axisymmetric finite element method and Houbolt time-integration scheme. For which the finite element program is newly constructed and verified through the comparison of present numerical results with those by other researchers. E-type glass-epoxy composite cylinders with different fiber volume fractions are adopted and studied in detail with dynamic responses of the isotropic cylinder. Three dimensional wave motions are given in graphic form to show the realistic view of the wave propagation. Nondimensionalized dynamic characteristic variables which relate the size of finite element mesh, the time step, and the wave speed are presented for obtaining accurate and stable numerical results.