• 제목/요약/키워드: 무차원계수

Search Result 162, Processing Time 0.018 seconds

Characteristics and Parameters for Adsorption of Carbol Fuchsin Dye by Coal-based Activated Carbon: Kinetic and Thermodynamic (석탄계 활성탄에 의한 Carbol Fuchsin의 흡착 특성과 파라미터: 동력학 및 열역학)

  • Lee, Jong Jib
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.283-289
    • /
    • 2021
  • Adsorption characteristics of carbol fuchsin (CF) dye by coal-based activated carbon (CAC) were investigated using pH, initial concentration, temperature and contact time as adsorption variables. CF dissociates in water to have a cation, NH2+, which is bonded to the negatively charged surface of the activated carbon in the basic region by electrostatic attraction. Under the optimum condition of pH 11, 96.6% of the initial concentration was adsorbed. Isothermal adsorption behavior was analyzed using Langmuir, Freundlich, Temkin and Dubinin-Radushkevich models. Langmuir's equation was the best fit for the experimental results. Therefore, the adsorption mechanism was expected to be adsorbed as a monolayer on the surface of activated carbon with a uniform energy distribution. From the evaluated Langmuir's dimensionless separation coefficients (RL = 0.503~0.672), it was found that CF can be effectively treated by activated carbon. The adsorption energies determined by Temkin and Dubinin-Radushkevich models were E = 15.31~7.12 J/mol and B = 0.223~0.365 kJ/mol, respectively. Therefore, the adsorption process was physical (E < 20 J/mol, B < 8 kJ/mol). The experimental result of adsorption kinetics fit better the pseudo second order model. In the adsorption reaction of CF dye to CAC, the negative free energy change increased as the temperature increased. It was found that the spontaneity also increased with increasing temperature. The positive enthalpy change (40.09 kJ/mol) indicated an endothermic reaction.

Adsorption of Dyes with Different Functional Group by Activated Carbon: Parameters and Competitive Adsorption (활성탄에 의한 작용기가 다른 염료의 흡착: 파라미터 및 경쟁 흡착)

  • Lee, Jong Jib
    • Applied Chemistry for Engineering
    • /
    • v.33 no.2
    • /
    • pp.151-158
    • /
    • 2022
  • In this paper, parameter characteristics such as pH effect, isotherm, kinetic and thermodynamic parameters and competitive adsorption of dyes including malachite green (MG), direct red 81 (DR 81) and thioflavin S (TS), which have different functional groups, being adsorbed onto activated carbon were investigated. Langmuir, Freundlich and Temkin isotherm models were employed to find the adsorption mechanism. Effectiveness of adsorption treatment of three dyes by activated carbon were confirmed by the Langmuir dimensionless separation factor. The mechanism was found to be a physical adsorption which can be verified through the adsorption heat calculated by Temkin equation. The adsorption kinetics followed the pseudo second order and the rate limiting step was intra-particle diffusion. The positive enthalpy and entropy changes showed an endothermic reaction and increased disorder via adsorption at the S-L interface, respectively. For each dye molecule, negative Gibbs free energy increased with the temperature, which means that the process is spontaneous. In the binary component system, it was found that the same functional groups of the dye could interfere with the mutual adsorption, and different functional groups did not significantly affect the adsorption. In the ternary component system, the adsorption for MG lowered a bit, likely to be disturbed by the other dyes meanwhile DR 81 and TS were to be positively affected by the presence of MG, thus resulting in much higher adsorption.