• 제목/요약/키워드: 무작위탐색

검색결과 78건 처리시간 0.027초

부하평준화를 위한 Tabu 탐색의 효율적 이웃해 생성 방법

  • 강병호;조민숙;류광렬
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2003년도 춘계학술대회
    • /
    • pp.429-434
    • /
    • 2003
  • 본 논문은 작업일정계획에서 부하평준화 문제를 효율적으로 해결하기 위하여 tabu 탐색을 적용함에 있어서 확률적 선별에 기반하여 이웃해를 생성하는 방법을 제시한다. 이웃해 생성은 부하평준화를 위해 일정을 조정할 대상 작업을 선택하는 단계와 선택된 작업에 대해 일정 조정의 방향을 결정하는 단계로 구분된다. 확률적 선별에 기반한 이웃해 생성은 우선 무작위로 추출된 작업에 대해서 탐색의 질을 개선시킬 수 있는 가능성에 대한 추정치에 따라 확률을 부여하고, 이 확률에 기반하여 선택여부를 결정함으로써 이웃해를 선별하는 방법이다. 실제 현장의 부하평준화 문제를 대상으로 이웃해 생성 방법으로 무작위 방법, 그리디(greedy) 방법과의 비교 실험을 통해 확률적 선별에 기반한 이웃해 생성 방법의 성능을 검증하였다.

  • PDF

시간표 문제의 유저자 알고리즘을 이요한 해결에 관한 연구 (A Study of Genetic ALgorithm for Timetabling Problem)

  • 안종일
    • 한국정보처리학회논문지
    • /
    • 제7권6호
    • /
    • pp.1861-1866
    • /
    • 2000
  • 본 논문은 인공지능의 한 연구 분야인 다중 제약을 갖든 대학의 시간표 작성 문제를 해결하는 것으로서, 이를 위해 두 강좌 간의 시간 충동 제약과 요일 충동 제약을 동시에 표현 가능하도록 2-유형 에지(edge) 그래프를 정의하였다. 또한 이를 유전자 알고리즘으로 해결하는 방법을 제안하고 무작위 탐색의 효율을 높이기 위해 국부 탐색을 수행하는 방법을 소개하였다. 본 논문에서는 제안된방버버이 실험결과가 무작위 탐새고가비교하여 탐색 비용을 10000번의 반복횟수에서 평균 71% 달한 것으로 나타났다.

  • PDF

새로운 항생물질 탐색시 방선균의 발효과정

  • 김성욱
    • 미생물과산업
    • /
    • 제18권3호
    • /
    • pp.53-62
    • /
    • 1992
  • 최근들어 새로운 항생물질을 발견하기 위한 연구 동향은 크게 세가지로 대별된다. 첫째는 Streptomyces 속을 제외한 희귀 방선균류를 분리하거나 해양 미생물과 버섯류 및 곰팡이를 대상으로 하여 새로운 항생 물질의 발견 가능성을 증대시키려는 것과 둘째는 기존의 무작위 탐색방법을 탈피하고 보다 선택적이고 특이적인 목표 지향적인 탐색(target directed screening)을 통해 선별적인 탐색을 행하고 셋째는 유전자 조작을 통해 hybrid 항생물질을 생산하기 위한 여러 시도로 나눌수 있다. 한편 방선균의 가장 중요한 경제적인 측면은 항생물질 생산이라고 일컬어지고 있으나 방선균은 항생물질 이외에도 다른 상업적인 제품의 공급원이 되고 있으며, 어떤 방선균들은 한 종류 이상의 항생물질을 생산하기 때문에 새로운 발효기술을 응용하면 새로운 물질을 발견하는데 매우 커다란 도움을 줄 것으로 생각된다.

  • PDF

PSO를 이용한 뉴로-퍼지 시스템의 파라미터 최적화 (Optimization of the Parameter of Neuro-Fuzzy system using Particle Swarm Optimization)

  • 김승석;김용태;김주식;전병석
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 춘계학술대회 학술발표 논문집 제16권 제1호
    • /
    • pp.168-171
    • /
    • 2006
  • 본 논문에서는 Particle Swarm Optimization 기법을 이용한 뉴로-퍼지 시스템의 파라미터 동정을 실시한다. PSO의 학습 및 군집 특성을 이용하여 시스템을 학습한다. 유전 알고리즘과 같은 무작위 탐색법을 이용하며 하나의 해 군집에 대해 다수 객체들이 탐색하는 기법을 통하여 최적해 부분의 탐색성능을 높여 전체 모델의 학습성능을 개선하고자 한다. 제안된 기법의 유용성을 시뮬레이션을 통하여 보이고자 한다.

  • PDF

Greedy-based Neighbor Generation Methods of Local Search for the Traveling Salesman Problem

  • Hwang, Junha;Kim, Yongho
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권9호
    • /
    • pp.69-76
    • /
    • 2022
  • 순회 외판원 문제는 가장 유명한 조합 최적화 문제 중 하나이다. 지금까지 이 문제를 해결하기 위해 많은 메타휴리스틱 탐색 알고리즘들이 제안되어 왔으며, 그중의 하나가 지역 탐색이다. 지역 탐색에 있어서 매우 중요한 요소 중 하나가 이웃해 생성 방법으로 주로 역전(inversion)과 같은 무작위 기반 이웃해 생성 방법들이 사용되어 왔다. 본 논문에서는 4가지의 새로운 그리디 기반 이웃해 생성 방법들을 제안한다. 3가지 방법은 그리디 삽입 휴리스틱을 기반으로 하는데, 선택된 도시들을 하나씩 차례로 현재 가장 좋은 위치로 삽입한다. 나머지 하나는 그리디 회전을 기반으로 한다. 제안된 방법들은 대표적인 지역 탐색 알고리즘인 first-choice 언덕 오르기 탐색과 시뮬레이티드 어닐링에 적용된다. 실험을 통해 제안된 그리디 기반 방법들이 기존의 무작위 기반 방법들보다 성능이 우수함을 확인하였다. 또한 일부 그리디 기반 방법들은 기존의 지역 탐색 기법들보다 더 우수함을 확인하였다.

신경망 초기치 탐색방법 비교연구

  • 최대우;구자용;박헌진
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2000년도 추계학술발표회 논문집
    • /
    • pp.219-225
    • /
    • 2000
  • 데이터 마이닝 분야에서 널리 사용되고 있는 신경망은 최근 많은 통계인들의 관심을 끌고 있다. 그러나 범용 근사성(universal approximator)이라는 성질에도 불구하고 초기치에 따라 적합 결과가 크게 좌우되는 단점이 있다. 본 논문에서는 붓스트랩 표본을 통해 초기치를 발견하는 bumping 기법이 신경망 분야에서 사용되고 있는 무작위 탐색법 보다 더 정확하고 안정적인 초기치를 제공하여 주는가를 살펴 보았다.

  • PDF

A Combined Greedy Neighbor Generation Method of Local Search for the Traveling Salesman Problem

  • Yongho Kim;Junha Hwang
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권4호
    • /
    • pp.1-8
    • /
    • 2024
  • 순회 외판원 문제(TSP)는 잘 알려진 조합 최적화 문제 중 하나이다. 지역 탐색은 TSP를 해결하기 위한 한 가지 방법으로 사용되어 왔다. Greedy Random Insertion(GRI)은 지역 탐색을 위한 효과적인 이웃해 생성 방법으로 알려져 있다. GRI는 현재해로부터 일부 도시들을 무작위로 선택하고 그 도시들을 한 번에 하나의 도시만 고려하여 현재 부분해의 최적 위치로 삽입한다. 본 논문에서는 먼저 Full Greedy Insertion(FGI)이라는 또 다른 그리디 이웃해 생성 방법을 제안한다. FGI는 GRI와 마찬가지로 삽입 위치를 하나씩 결정하되 남은 모든 도시들을 한꺼번에 고려하여 결정한다. 그리고 본 논문에서는 GRI와 FGI를 결합하는 방법을 제시한다. 결합 방법에서는 시뮬레이티드 어닐링 내에서 매 반복 시 GRI 또는 FGI를 무작위로 선택하여 실행한다. 실험 결과에 의하면, FGI 단독으로는 성능이 매우 우수한 것은 아니다. 그러나 결합 방법은 GRI를 포함한 기존의 지역 탐색 방법들보다 우수한 성능을 발휘함을 확인하였다.

Pareto 최적점 기반 다목적함수 기법 개발에 관한 연구 (Development of a Multi-objective function Method Based on Pareto Optimal Point)

  • 나승수
    • 대한조선학회논문집
    • /
    • 제42권2호
    • /
    • pp.175-182
    • /
    • 2005
  • It is necessary to develop an efficient optimization technique to optimize the engineering structures which have given design spaces, discrete design values and several design goals. As optimization techniques, direct search method and stochastic search method are widely used in designing of engineering structures. The merit of the direct search method is to search the optimum points rapidly by considering the search direction, step size and convergence limit. And the merit of the stochastic search method is to obtain the global optimum points by spreading point randomly entire the design spaces. In this paper, a Pareto optimal based multi-objective function method (PMOFM) is developed by considering the search direction based on Pareto optimal points, step size, convergence limit and random search generation . The PMOFM can also apply to the single objective function problems, and can consider the discrete design variables such as discrete plate thickness and discrete stiffener spaces. The design results are compared with existing Evolutionary Strategies (ES) method by performing the design of double bottom structures which have discrete plate thickness and discrete stiffener spaces.

부하평준화 문제에서 국지적 탐색의 효율향상을 위한 이웃해 선정 기법 (A Neighbor Selection Technique for Improving Efficiency of Local Search in Load Balancing Problems)

  • 강병호;조민숙;류광렬
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권2호
    • /
    • pp.164-172
    • /
    • 2004
  • 일반적으로 국지적 탐색에서 최적해를 획득할 가능성은 가능한 많은 이웃해를 생성하면서 반복 수를 늘릴수록 높아지나 긴 탐색시간이 소요된다. 따라서 한정된 시간 내에 최적해를 효율적으로 찾기 위해서는. 적절한 수의 이웃해를 생성하되, 탐색의 질을 높일 수 있는 이웃해를 선별해서 생성하는 것이 요구된다. 본 논문에서는 국지적 탐색기법을 적용하여 부하평준화 문제를 해결할 때, 탐색의 효율을 향상시킬 수 있는 이웃해 선정 기법을 제안하고, 실세계 데이타를 대상으로 그 성능을 검증하였다. 본 논문에서 제안하는 이웃해 선정 기법은 확률적 선별에 기반 한 방법으로서, 탐색의 질을 개선시킬 가능성에 대한 추정치를 기준으로 부여된 확률에 따라 이웃해를 선별하여 생성하는 기법이다. 대상 문제에 국지적 탐색기법으로 tabu 탐색과 simulated annealing를 적용한 실험에서, 무작위 또는 그리디 선별에 기반 한 방법보다 우수한 성능을 보임을 확인하였다.

지도 생성과 위치 인식을 적용한 가정용 청소로봇의 경로 탐색 기법 (Path Planning Method of Home Vacuum Robot with Mapping and Localization)

  • 양시현;이정현;정덕원;민덕기
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2010년도 한국컴퓨터종합학술대회논문집 Vol.37 No.1(C)
    • /
    • pp.358-363
    • /
    • 2010
  • 본 논문은 가정용 청소로봇이 대중화가 이루어지면서 많은 종류의 청소로봇들이 개발되고 있지만 대부분의 청소로봇들이 외부 환경과 상호적으로 대응하지 못하고 무작위 경로 생성에 가까운 알고리즘들을 적용하고 있는 점에서 착안하였다. 목표로 하고 있는 경로 탐색 기법은 대부분의 가정용 청소로봇이 장착하고 있는 범퍼 센서를 사용하여 논리적인 가상의 지도를 생성하고 이 정보를 활용하여 청소로봇의 위치를 파악하고 최적의 청소 경로를 생성하는 방법이다. 사람이 진공청소기를 사용하여 청소를 하듯이 청소할 공간을 파악하고 일련의 규칙대로 청소하는 무의식의 프로세스를 청소로봇이 최대한 유사하게 작동하기 위해서는 벽뿐만 아니라 소파나 테이블과 같은 로봇의 움직임을 방해하는 각종 요소들을 모두 고려해야 한다. 그러므로 본 논문에서는 Occupancy Grid Map을 생성하여 로봇이 장애물의 위치를 파악하고 청소 경로를 탐색할 수 있도록 한다. 그리고 이러한 경로 탐색 기법을 적용하기 위해서 Monte-Carlo Localization 알고리즘을 사용하며 생성된 Occupancy Grid Map을 통하여 로봇이 자체적으로 위치를 파악할 수 있도록 한다. 청소로봇이 자체의 위치를 파악하게 되면 로봇의 크기와 비교하여 움직일 수 있는 공간과 움직이지 못하는 공간을 구별하여 이동 가능한 영역과는 별개로 청소를 위한 경로 탐색을 수행할 수 있다. 청소를 목적으로 하는 경로 탐색은 청소 영역을 최대화하면서 최적의 경로를 탐색하고 Localization을 통해 해당 경로를 유지하면서 이동할 수 있게 된다. 이러한 경로 탐색 기법을 제시하면서 기존의 청소로봇들과의 알고리즘 차원에서의 비교 및 그 성능 평가는 향후 연구에서 해결하도록 한다.

  • PDF