본 논문은 작업일정계획에서 부하평준화 문제를 효율적으로 해결하기 위하여 tabu 탐색을 적용함에 있어서 확률적 선별에 기반하여 이웃해를 생성하는 방법을 제시한다. 이웃해 생성은 부하평준화를 위해 일정을 조정할 대상 작업을 선택하는 단계와 선택된 작업에 대해 일정 조정의 방향을 결정하는 단계로 구분된다. 확률적 선별에 기반한 이웃해 생성은 우선 무작위로 추출된 작업에 대해서 탐색의 질을 개선시킬 수 있는 가능성에 대한 추정치에 따라 확률을 부여하고, 이 확률에 기반하여 선택여부를 결정함으로써 이웃해를 선별하는 방법이다. 실제 현장의 부하평준화 문제를 대상으로 이웃해 생성 방법으로 무작위 방법, 그리디(greedy) 방법과의 비교 실험을 통해 확률적 선별에 기반한 이웃해 생성 방법의 성능을 검증하였다.
본 논문은 인공지능의 한 연구 분야인 다중 제약을 갖든 대학의 시간표 작성 문제를 해결하는 것으로서, 이를 위해 두 강좌 간의 시간 충동 제약과 요일 충동 제약을 동시에 표현 가능하도록 2-유형 에지(edge) 그래프를 정의하였다. 또한 이를 유전자 알고리즘으로 해결하는 방법을 제안하고 무작위 탐색의 효율을 높이기 위해 국부 탐색을 수행하는 방법을 소개하였다. 본 논문에서는 제안된방버버이 실험결과가 무작위 탐새고가비교하여 탐색 비용을 10000번의 반복횟수에서 평균 71% 달한 것으로 나타났다.
최근들어 새로운 항생물질을 발견하기 위한 연구 동향은 크게 세가지로 대별된다. 첫째는 Streptomyces 속을 제외한 희귀 방선균류를 분리하거나 해양 미생물과 버섯류 및 곰팡이를 대상으로 하여 새로운 항생 물질의 발견 가능성을 증대시키려는 것과 둘째는 기존의 무작위 탐색방법을 탈피하고 보다 선택적이고 특이적인 목표 지향적인 탐색(target directed screening)을 통해 선별적인 탐색을 행하고 셋째는 유전자 조작을 통해 hybrid 항생물질을 생산하기 위한 여러 시도로 나눌수 있다. 한편 방선균의 가장 중요한 경제적인 측면은 항생물질 생산이라고 일컬어지고 있으나 방선균은 항생물질 이외에도 다른 상업적인 제품의 공급원이 되고 있으며, 어떤 방선균들은 한 종류 이상의 항생물질을 생산하기 때문에 새로운 발효기술을 응용하면 새로운 물질을 발견하는데 매우 커다란 도움을 줄 것으로 생각된다.
본 논문에서는 Particle Swarm Optimization 기법을 이용한 뉴로-퍼지 시스템의 파라미터 동정을 실시한다. PSO의 학습 및 군집 특성을 이용하여 시스템을 학습한다. 유전 알고리즘과 같은 무작위 탐색법을 이용하며 하나의 해 군집에 대해 다수 객체들이 탐색하는 기법을 통하여 최적해 부분의 탐색성능을 높여 전체 모델의 학습성능을 개선하고자 한다. 제안된 기법의 유용성을 시뮬레이션을 통하여 보이고자 한다.
순회 외판원 문제는 가장 유명한 조합 최적화 문제 중 하나이다. 지금까지 이 문제를 해결하기 위해 많은 메타휴리스틱 탐색 알고리즘들이 제안되어 왔으며, 그중의 하나가 지역 탐색이다. 지역 탐색에 있어서 매우 중요한 요소 중 하나가 이웃해 생성 방법으로 주로 역전(inversion)과 같은 무작위 기반 이웃해 생성 방법들이 사용되어 왔다. 본 논문에서는 4가지의 새로운 그리디 기반 이웃해 생성 방법들을 제안한다. 3가지 방법은 그리디 삽입 휴리스틱을 기반으로 하는데, 선택된 도시들을 하나씩 차례로 현재 가장 좋은 위치로 삽입한다. 나머지 하나는 그리디 회전을 기반으로 한다. 제안된 방법들은 대표적인 지역 탐색 알고리즘인 first-choice 언덕 오르기 탐색과 시뮬레이티드 어닐링에 적용된다. 실험을 통해 제안된 그리디 기반 방법들이 기존의 무작위 기반 방법들보다 성능이 우수함을 확인하였다. 또한 일부 그리디 기반 방법들은 기존의 지역 탐색 기법들보다 더 우수함을 확인하였다.
데이터 마이닝 분야에서 널리 사용되고 있는 신경망은 최근 많은 통계인들의 관심을 끌고 있다. 그러나 범용 근사성(universal approximator)이라는 성질에도 불구하고 초기치에 따라 적합 결과가 크게 좌우되는 단점이 있다. 본 논문에서는 붓스트랩 표본을 통해 초기치를 발견하는 bumping 기법이 신경망 분야에서 사용되고 있는 무작위 탐색법 보다 더 정확하고 안정적인 초기치를 제공하여 주는가를 살펴 보았다.
순회 외판원 문제(TSP)는 잘 알려진 조합 최적화 문제 중 하나이다. 지역 탐색은 TSP를 해결하기 위한 한 가지 방법으로 사용되어 왔다. Greedy Random Insertion(GRI)은 지역 탐색을 위한 효과적인 이웃해 생성 방법으로 알려져 있다. GRI는 현재해로부터 일부 도시들을 무작위로 선택하고 그 도시들을 한 번에 하나의 도시만 고려하여 현재 부분해의 최적 위치로 삽입한다. 본 논문에서는 먼저 Full Greedy Insertion(FGI)이라는 또 다른 그리디 이웃해 생성 방법을 제안한다. FGI는 GRI와 마찬가지로 삽입 위치를 하나씩 결정하되 남은 모든 도시들을 한꺼번에 고려하여 결정한다. 그리고 본 논문에서는 GRI와 FGI를 결합하는 방법을 제시한다. 결합 방법에서는 시뮬레이티드 어닐링 내에서 매 반복 시 GRI 또는 FGI를 무작위로 선택하여 실행한다. 실험 결과에 의하면, FGI 단독으로는 성능이 매우 우수한 것은 아니다. 그러나 결합 방법은 GRI를 포함한 기존의 지역 탐색 방법들보다 우수한 성능을 발휘함을 확인하였다.
It is necessary to develop an efficient optimization technique to optimize the engineering structures which have given design spaces, discrete design values and several design goals. As optimization techniques, direct search method and stochastic search method are widely used in designing of engineering structures. The merit of the direct search method is to search the optimum points rapidly by considering the search direction, step size and convergence limit. And the merit of the stochastic search method is to obtain the global optimum points by spreading point randomly entire the design spaces. In this paper, a Pareto optimal based multi-objective function method (PMOFM) is developed by considering the search direction based on Pareto optimal points, step size, convergence limit and random search generation . The PMOFM can also apply to the single objective function problems, and can consider the discrete design variables such as discrete plate thickness and discrete stiffener spaces. The design results are compared with existing Evolutionary Strategies (ES) method by performing the design of double bottom structures which have discrete plate thickness and discrete stiffener spaces.
일반적으로 국지적 탐색에서 최적해를 획득할 가능성은 가능한 많은 이웃해를 생성하면서 반복 수를 늘릴수록 높아지나 긴 탐색시간이 소요된다. 따라서 한정된 시간 내에 최적해를 효율적으로 찾기 위해서는. 적절한 수의 이웃해를 생성하되, 탐색의 질을 높일 수 있는 이웃해를 선별해서 생성하는 것이 요구된다. 본 논문에서는 국지적 탐색기법을 적용하여 부하평준화 문제를 해결할 때, 탐색의 효율을 향상시킬 수 있는 이웃해 선정 기법을 제안하고, 실세계 데이타를 대상으로 그 성능을 검증하였다. 본 논문에서 제안하는 이웃해 선정 기법은 확률적 선별에 기반 한 방법으로서, 탐색의 질을 개선시킬 가능성에 대한 추정치를 기준으로 부여된 확률에 따라 이웃해를 선별하여 생성하는 기법이다. 대상 문제에 국지적 탐색기법으로 tabu 탐색과 simulated annealing를 적용한 실험에서, 무작위 또는 그리디 선별에 기반 한 방법보다 우수한 성능을 보임을 확인하였다.
본 논문은 가정용 청소로봇이 대중화가 이루어지면서 많은 종류의 청소로봇들이 개발되고 있지만 대부분의 청소로봇들이 외부 환경과 상호적으로 대응하지 못하고 무작위 경로 생성에 가까운 알고리즘들을 적용하고 있는 점에서 착안하였다. 목표로 하고 있는 경로 탐색 기법은 대부분의 가정용 청소로봇이 장착하고 있는 범퍼 센서를 사용하여 논리적인 가상의 지도를 생성하고 이 정보를 활용하여 청소로봇의 위치를 파악하고 최적의 청소 경로를 생성하는 방법이다. 사람이 진공청소기를 사용하여 청소를 하듯이 청소할 공간을 파악하고 일련의 규칙대로 청소하는 무의식의 프로세스를 청소로봇이 최대한 유사하게 작동하기 위해서는 벽뿐만 아니라 소파나 테이블과 같은 로봇의 움직임을 방해하는 각종 요소들을 모두 고려해야 한다. 그러므로 본 논문에서는 Occupancy Grid Map을 생성하여 로봇이 장애물의 위치를 파악하고 청소 경로를 탐색할 수 있도록 한다. 그리고 이러한 경로 탐색 기법을 적용하기 위해서 Monte-Carlo Localization 알고리즘을 사용하며 생성된 Occupancy Grid Map을 통하여 로봇이 자체적으로 위치를 파악할 수 있도록 한다. 청소로봇이 자체의 위치를 파악하게 되면 로봇의 크기와 비교하여 움직일 수 있는 공간과 움직이지 못하는 공간을 구별하여 이동 가능한 영역과는 별개로 청소를 위한 경로 탐색을 수행할 수 있다. 청소를 목적으로 하는 경로 탐색은 청소 영역을 최대화하면서 최적의 경로를 탐색하고 Localization을 통해 해당 경로를 유지하면서 이동할 수 있게 된다. 이러한 경로 탐색 기법을 제시하면서 기존의 청소로봇들과의 알고리즘 차원에서의 비교 및 그 성능 평가는 향후 연구에서 해결하도록 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.