• Title/Summary/Keyword: 무인 표적기

Search Result 40, Processing Time 0.026 seconds

Improvement of Target Position Estimation Accuracy for UAV using Kalman Filter (칼만필터를 이용한 무인기의 표적위치 추정 정확도 개선)

  • Oh, Soo-Hun;Kim, Tae-Sik
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.237-244
    • /
    • 2007
  • Estimation of target position is one of the main functions of surveillance UAVs, and is being used to various purposes but generally noisy target position is estimated due to the existence of random measurement errors. In this report, a method of diminishing target position estimation error by calculating target position using Kalman Filtered optimum values such as position, attitude of UAV and sight vector of optical instrument, is proposed.

  • PDF

Design of optimum propeller for target drone II (무인 표적기 프로펠러의 최적 설계 II)

  • 성형건;노태성
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.246-249
    • /
    • 2003
  • The propeller of the propulsion system for a target drone has been designed. Vortex theory has been applied to the propeller design method. This method analyze the propeller performance according to the design parameters. The optimum design has been aimed to maximize the efficiency. The performance of the designed propeller has been analyzed.

  • PDF

Propeller Design of Unmanned Target Drone for the Performance Improvement (무인 표적기의 성능 향상을 위한 프로펠러 설계)

  • Lee Sangmyeong;Sung Hyunggun;Roh Taeseong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.1
    • /
    • pp.46-52
    • /
    • 2005
  • A propeller as a propulsion system has been redesigned to improve performance of a target drone. The vortex theory has been applied for the propeller design method. Design variables have been the chord length along the direction of blade radius, the change of blade radius, and the geometric angle of the blade. The existing propeller has been redesigned and modified considering engine RPM change to get the improved thrust at both low and high speeds.

Optimal Design of Unmanned Target Drone Propeller (무인 표적기 프로펠러의 최적 설계)

  • 성형건;노태성
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.115-118
    • /
    • 2003
  • A Propeller as the propulsion system of a target drone has been designed. The vortex theory has been applied for the propeller design method. A compressible effect has been removed and the Reynolds Number assumed to be constant. Design variables have been the chord length and the geometric angle of the blade. The aim of this optimum design has been an efficiency maximization. A performance of the designed propeller has been analyzed.

  • PDF

Development of an electric powered, high speed, low-noise, small aerial target drone platform (전기 동력 고속 저소음 소형 대공 표적기 플랫폼 개발)

  • Taekyoon Kim;Youngjin Kim
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.3
    • /
    • pp.76-85
    • /
    • 2024
  • Recently, from a global perspective, the use of small unmanned aerial vehicles in terrorism and warfare is increasing, and the need for anti-drone shooting training targeting small UAVs is increasing. However, in reality, there are many cases in Korea where anti-drone shooting training is restricted, due to complaints such as noise. In this paper, we describe the development and testing of an electric-powered direct strike type high-speed, low-noise small aerial target drone. To achieve the flight speed and endurance required for shooting training, target drone sizing was performed, and aerodynamic performance analysis was conducted using a CFD program. Based on the performance analysis, the motor propulsion system was selected and a variable pitch propeller system was designed, and performance tests were performed on a ground test rig. Finally, the target flight speed, flight time, and flight noise level were confirmed through flight tests.

Development of Collision Avoidance System based on TCAS II for Smart UAV (TCAS II를 이용한 스마트무인기용 충돌회피시스템 개발)

  • Lee, Hyeon-Cheol;Kim, Seung-Ju
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.248-257
    • /
    • 2006
  • There will come someday when UAUs can fly into the airspace of manned aircraft in the near future because of the increasing number of operational UAUs together with technologies development. Since pilots of UAVs are on the gound, the equipment for sensing and avoiding obstacles in front is indispensable. In this paper, we analyze functions and interfaces of TCAS II, a collision avoidance device for manned aircraft, then find out whether it is suitable for the collision avoidance device for UAV and problems associated with it, if any. It turns out to be that the onboard directional antenna of TCAS II does not provide a precise directional information, and that the TCAS II is not assumed to be installed alone, but used as supplementary with other device which provides the better precision.

  • PDF

무인항공기의 각속도 기반 자동비행제어시스템 개발

  • Lee, Jang-Ho;Ryu, Hyeok;Kim, Jae-Eun;Ahn, Iee-Gi;Kim, Eung-Tai
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.7-14
    • /
    • 2005
  • This paper describes development of automatic flight control system for an unmanned target drone. Current target drone is operated by pilot control of on-board servo motor via remote control system. Automatic flight control system for the target drone greatly reduces work load of ground pilot and can increase application area of the drone. Most UAVs being operated nowdays use high-priced sensors as AHRS and IMU to measure the attitude, but those are costly. This paper introduces the development of low-cost automatic flight control system with low-cost sensors. The integrated automatic flight control system has been developed. The performance of automatic flight control system is verified by flight test.

  • PDF

Design of Navigation System for Low Cost Unmanned Aerial Vehicle (저가형 무인항공기 운용을 위한 항법시스템 설계)

  • Lee, Jang-Ho;Kim, Sung-Pil;Park, Mu-Hyeok;Ahn, Iee-Ki
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.2
    • /
    • pp.105-111
    • /
    • 2004
  • This paper describes the design of navigation system for an unmanned target drone which is operated by Korean army as for anti-air gun shooting training. Current target drone is operated by pilot control of on-board servo motor via remote control system. Automatic flight control system for the target drone greatly reduces work load of ground pilot and can increase application area of the drone. Most UAVs being operated nowdays use high-priced sensors as AHRS and IMU to measure the attitude, but those are costly. This paper introduces the development of low-cost automatic flight control system with low-cost sensors. The integrated automatic flight control system has been developed by integrating combining power module, switching module, monitoring module and RC receiver as an one module. The performance of navigation for low cost unmanned aerial vehicle, unmanned target drone as our test bed in this paper is verified by both Hardware in the loop simulation(HILS) to test performance of GPS as GPS output frequency high and results of flight test.

  • PDF

Performance Enhancement of Virtual War Field Simulator for Future Autonomous Unmanned System (미래 자율무인체계를 위한 가상 전장 환경 시뮬레이터 성능 개선)

  • Lee, Jun Pyo;Kim, Sang Hee;Park, Jin-Yang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.10
    • /
    • pp.109-119
    • /
    • 2013
  • An unmanned ground vehicle(UGV) today plays a significant role in both civilian and military areas. Predominantly these systems are used to replace humans in hazardous situations. To take unmanned ground vehicles systems to the next level and increase their capabilities and the range of missions they are able to perform in the combat field, new technologies are needed in the area of command and control. For this reason, we present war field simulator based on information fusion technology to efficiently control UGV. In this paper, we present the war field simulator which is made of critical components, that is, simulation controller, virtual image viewer, and remote control device to efficiently control UGV in the future combat fields. In our information fusion technology, improved methods of target detection, recognition, and location are proposed. In addition, time reduction method of target detection is also proposed. In the consequence of the operation test, we expect that our war field simulator based on information fusion technology plays an important role in the future military operation significantly.

Application of High-Order Target Dynamics to Position and Force Control of a Manipulator (고차수 동력학적 표적 모형을 이용한 로보트의 위치와 힘의 제어)

  • Lee, Sang-Moo
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.73-82
    • /
    • 1995
  • 이 논문에서는 고차수 동력학적 표적모형을 이용하여 간단하고 우수한 성능을 지니는 위치와 힘의 추적제어법을 제안하였다. 이 표적모형은 위치오차와 힘오차의 상관관계를 자유운동을 위한 임피던스와 힘오차의 보상기로 모형화한다. 이들의 특성중, 적절한 보상기 설계에 의하여 위치입력과 힘입력 추적제어, 천이응담을 줄이기 위한 위치입력과 힘입력의 동시사용 및 매니퓰레이터의 접촉시에 부드러운 접촉을 위한 동특성의 연속성 유지 보상기 설계에 대하여 고찰하였다. 또한 접촉환경이 불규칙한 기하구조를 갖는 경우에,위치교란중 힘의 추적제어를 모의실험으로 보였다.

  • PDF