• Title/Summary/Keyword: 무인회수기

Search Result 4, Processing Time 0.015 seconds

무인선 회수를 위한 히빙라인 발사장치의 해상시험 연구 (1)

  • Kim, Yeon-Gyu;Kim, Seon-Yeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2017.11a
    • /
    • pp.148-150
    • /
    • 2017
  • 무인선은 사람이 탑승하지 않기 때문에 회수에 어려움이 있다. 본 연구에서는 무인선의 회수를 용이하도록 하기 위하여 히빙라인 발사장치를 개발하였고, 히빙라인 발사장치 이용에 대한 검증을 위하여 해상시험을 수행하였다. 무인선 회수 시스템은 히방리인 발사장치, 견인장치, 크레인-무인선 결합장치, 원격조종기로 구성되어 있고, 히빙라인 발사장치는 발사관, 원격 격발장치, 공기통, 견인탄과 히빙라인으로 구성되어 있으며, 히빙라인 발사장치는 원격조종기를 이용하여 모선에서 제어가 가능하다. 제작된 히빙라인 발사장치를 유인선에 설치하여 실제로 해상에서 사용이 가능한지 검토하였다. 히빙라인을 원격으로 발사하고 모선에서 크레인을 이용하여 무인선에 결합하는 해상시험을 수행하였으며, 해상시험을 통하여 히빙라인 발사장치의 유용성을 확인하였다.

  • PDF

A Bottle Recycling Information Management System for the Promotion of Saving and Recycling of Resources Due (자원 순환 촉진을 위한 빈병 재활용 정보 관리 시스템)

  • Jeong, Pil-seong;Cho, Yang-hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.11
    • /
    • pp.2155-2161
    • /
    • 2016
  • Since Korea is highly dependent on energy imports, it has been making efforts to save energy resources by enacting laws to promote resource saving and recycling. Recently, as a part of recycling of empty bottles, a bottle unattended collecting machine has been installed in the big shopping mall in the metropolitan area. However, there is no commercialization of the unattended collecting machine in Korea and the smart device application for providing information on empty bottle recycling is not yet provided. In this paper, we have designed and constructed a bottle recycling information management system to promote resource recycling. The manager has built a homepage that can manage the information of the empty bottle and the a bottle unattended collecting machine. Also, many people with smart devices can easily access bottle recycling information by using camera and barcode search and label search.

A Bottle Recognition and Classification Algorithm for Deposit Refund (병 인식 및 보증금 환불을 위한 분류 알고리즘)

  • Jeong, Pil-seong;Cho, Yang-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.9
    • /
    • pp.1744-1751
    • /
    • 2017
  • We are striving to strengthen environmental regulations and reduce household waste in all countries around the world. Korea is also striving for the circulation of energy resources by enacting laws to promote resource saving and recycling. The government has implemented an empty bottle deposit system for the recycling of empty bottles, but there is a limit to the collection through manpower and the reverse vending machine is not localized. In this paper, we propose a recyclable bottle recognition and classification algorithm which is essential in the reverser vending machine to promote energy resource circulation. The proposed algorithm is a complex identification algorithm using OpenCV and CNN(Convolution Neural Network). In order to evaluate the effectiveness of the proposed algorithm, we implement a classification system that operates in an reverse vending machine, so that it can easily acquire information about bottles and reverse vending machine in various devices.

Hydrogen Supply to PEMFC for Unmanned Aero Vehicles Using Hydrolysis Reaction of NaBH4 (NaBH4 가수분해 반응에 의한 무인항공기용 PEMFC 수소공급)

  • Jung, Hyeon-Seong;Jo, Byung-Joo;Lee, Jung-Hoon;Lee, Han-Jong;Na, Il-Chai;Chu, Cheun-Ho;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.11-15
    • /
    • 2016
  • Proton Exchange Membrane Fuel Cells (PEMFC) instead of batteries is appropriate for long time flight of unmanned aero vehicles (UAV). In this work, $NaBH_4$ hydrolysis system supplying hydrogen to PEMFC was studied. In order to decrease weight of $NaBH_4$ hydrolysis system, enhancement of hydrogen yield, recovery of condensing water and maintenance of stable hydrogen yield were studied. The hydrogen yield of 3.4% was increased by controlling of hydrogen pressure in hydrolysis reactor. Condensing water formed during air cooling of hydrogen was recovered into storage tank of $NaBH_4$ solution. In this process the condensing water dissolved $NaBH_4$ powder and then addition of $NaBH_4$ solution decreased system weight of 14%. $NaBH_4$ hydrolysis system was stably operated with hydrogen yield of 96% by 2.0g Co-P-B catalyst for 10 hours at 2.0L/min hydrogen evolution rate.