• Title/Summary/Keyword: 무인운전 철도시스템

Search Result 25, Processing Time 0.018 seconds

A Study on Reliability Centered Maintenance of AGT Vehicle System (고무차륜 AGT 차량의 신뢰성 중심 유지보수(RCM)에 관한 연구)

  • 한석윤;하천수;이한민
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.3
    • /
    • pp.271-277
    • /
    • 2004
  • This paper is concerned with the reliability centered maintenance (RCM) of the Automated Guideway Transit (AGT) vehicle system. Korea Railroad Research Institute (KRRI) has developed the AGT vehicle system from 1999 to 2004. The provisions for a specific maintenance system including RAMS (reliability, availability, maintainability & safety) of AGT vehicle system is necessary for maintaining good operation conditions. RCM is a process used to determine what must be done to ensure that any system continues to do whatever its users want it to do in its present operating conditions. Therefore, we introduce RCM in details and describe how RCM should be applied to AGT vehicle system on Gyeong-San test line. Analyses to approach RCM to AGT vehicle system are demonstrated in the seven steps that contain each main task and detailed operating conditions.

A Conceptual Design of Maintenance Information System Interlace for Real-Time Diagnosis of Driverless EMU (무인전동차의 실시간 상태 진단을 위한 유지보수 정보시스템 인터페이스에 대한 개념설계)

  • Han, Jun-hee;Kim, Chul-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.63-68
    • /
    • 2017
  • Although automated metro subway systems have the advantage of operating a train without a train driver, it is difficult to detect an immediate fault condition and take countermeasures when an unusual situation occurs. Therefore, it is important to construct a maintenance information system (MIS) that detects the vehicle failure/status information in real time and maintains it efficiently in the depot of the railway's vehicles. This paper proposes a conceptual design method that realizes the interface between the train control system (TCS), the operation control center train control monitoring system (OCC-TCMS) console, and the MIS using wireless communication network in real-time. To transmit a large amount of information on 800,000 occurrences per day during operation, data was collected in a 56 byte data table using a data processing algorithm. This state information was classified into 4 hexadecimal codes and transmitted to the MIS by mapping the status and the fault information on the vehicle during the main line operation. Furthermore, the transmission and reception data were examined in real time between the TCS and MIS, and the implementation of the failure information screen was then displayed.

The Improvement of Electrical Point Machine Wiring Set (선로전환기(NS)의 배선세트 개선)

  • Jeong, Rag-Gyo;Park, Gun-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.351-358
    • /
    • 2016
  • An Electrical Point Machine (NS:New-type Switch), which is equipped and operated at railways in Korea, has been used since the 1960s after being imported from Japan. On the other hand, although the mechanical configuration has improved the position motor control circuit, the electrical connection has not been improved, so NS may have a problem, such as the interlocking system of automatic train operation. In addition, NS is the most vulnerable part in the railway system and a huge train accident may occur due to minor defects. The existing NS wiring set of the circuit controller should be checked only if fixed. Therefore, an excessive inspection time only by a Railroad Signal expert is required. In this paper, the improvement of electrical connection in a NS wiring set, such as the position motor control circuit, was developed and the prototype was installed at Seoul Metro in the distance to go section. The results can be used to help make appropriate adjustments. The improvement of the NS wiring set enhance the maintenance efficiency, passenger service and the stability of the signal system as well as reducing the maintenance cost.

A Study on the Possibilities of PRT Applications (소형궤도차량(PRT)의 국내 적용시 정책적 검토 사항 연구)

  • Lee, Jin-Sun;Kim, Kyoung-Tae
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.4
    • /
    • pp.526-534
    • /
    • 2009
  • PRT(Personal Rapid Transit) can be described as a system of driverless taxicabs, that. automatically take passengers to their destinations along dedicated guideways, without intermediate stops.It is ideally suited as a short feeder transportation for on-demand circulation operations at train stations, airports, office complex, amusement park and shopping center. This PRT study do suggest that a PRT system could provide a high level of mobility to the commuters making work trips, workers making work, shopping and other non-work trips, residents making shopping and other non-work trips and recreational riders.This study presents the possibilities of PRT applications in national level. As the technology continues to advance, there may be opportunities to improve the reliability, and efficiency of our future public transportation systems.

An Improved Method of FTA and Associated Risk Analysis Reflecting Automotive Functional Safety Standard (자동차 기능안전 표준을 반영하는 개선된 FTA 및 위험원 분석 기법)

  • Jung, Ho-Jeon;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.9-17
    • /
    • 2017
  • Ensuring the safety of automobiles and trains during system operation is regarded as indispensable due to the progress in unmanned operation. The automotive functional safety standard, ISO 26262, has been proposed to ensure the safe design of vehicles. This standard describes in detail the required risk analysis and evaluation procedure and safety measures, while appropriately reflecting the system design information. Therefore, much research has been done on the risk analysis procedure, wherein the design information is mostly extracted from physical components of similar systems already in operation, the information traced back to obtain constituent functions, and then methods of identifying risk sources are studied. This method allows the sources of risk to be identified quickly and easily, however if the design requirements are changed or systems are newly developed, others may be introduced which are not accounted for, thereby yielding mismatched design information. To resolve this problem, we propose a top-down analysis in order to utilize the system design information appropriately. Specifically, a conceptual system is designed to obtain the functions, which are then analyzed. Then, a function-based fault tree analysis is conducted, followed by a risk source analysis. In this paper, a case study of automotive safety is presented, revealing that the proposed method can analyze the risk sources with reduced possibility of omission by systematically reflecting the system design information.