• Title/Summary/Keyword: 무인기 제어

Search Result 355, Processing Time 0.026 seconds

A Study on Automatic Sensing Device for Water Leakage of Cooling Pipe at Blast Furnace by Use The Electronic System (전자제어 장치를 이용한 용광로 냉각관 누수 지동 감지장치 개발에 관한 연구)

  • Kang, Chang-Soo;Kang, Ki-Seong
    • 전자공학회논문지 IE
    • /
    • v.46 no.4
    • /
    • pp.25-30
    • /
    • 2009
  • The cooling water circulation pipes had been used to drop the temperature of refractory outside shell of blast furnace by cooling plate or stave type. They were attacked by surrounding CO gas and it was the cause that they were corroded and the water inflow in the refractory due to leakage of water. So, the life of refractory material was shorten and changed for the worse the conditions of blast furnace. The automatic sensing device for water leakage of cooling pipe was developed to check the position of trouble by use the micro-process system when cooling water leak and then CO gas will be inflowed into the cooling pipe at the leakage position. The inflowed CO gas will be detected in the micro-process system and delivered the detected position of cooling plate or stave to main control room through the wireless-radio relay station. This system can be possible to detect the position of cooling plate or stave the water leakage part immediately and then deliver the signal to main control room by use the micro-process system and wireless-radio relay station. This system will develop the working condition from manual system to unmanned auto alarm system.

Development of the Neural Network Steering Controller for Unmanned electric Vehicle (무인 전기자동차의 신경회로망 조향 제어기 개발)

  • 손석준;김태곤;김정희;류영재;김의선;임영철;이주상
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.281-286
    • /
    • 2000
  • This paper describes a lateral guidance system of an unmanned vehicle, using a neural network model of magneto-resistive sensor and magnetic fields. The model equation was compared with experimental sensing data. We found that the experimental result has a negligible difference from the modeling equation result. We verified that the modeling equation can be used in the unmanned vehicle simulations. As the neural network controller acquires magnetic field values(B$\_$x/, B$\_$y/, B$\_$z/) from the three-axis, the controller outputs a steering angle. The controller uses the back-propagation algorithms of neural network. The learning pattern acquisition was obtained using computer simulation, which is more exact than human driving. The simulation program was developed in order to verify the acquisition of the learning pattern, learning itself, and the adequacy of the design controller. A computer simulation of the vehicle (including vehicle dynamics and steering) was used to verify the steering performance of the vehicle controller using the neural network. Good results were obtained. Also, the real unmanned electrical vehicle using neural network controller verified good results.

  • PDF

Terrain Cover Classification Technique Based on Support Vector Machine (Support Vector Machine 기반 지형분류 기법)

  • Sung, Gi-Yeul;Park, Joon-Sung;Lyou, Joon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.6
    • /
    • pp.55-59
    • /
    • 2008
  • For effective mobility control of UGV(unmanned ground vehicle), the terrain cover classification is an important component as well as terrain geometry recognition and obstacle detection. The vision based terrain cover classification algorithm consists of pre-processing, feature extraction, classification and post-processing. In this paper, we present a method to classify terrain covers based on the color and texture information. The color space conversion is performed for the pre-processing, the wavelet transform is applied for feature extraction, and the SVM(support vector machine) is applied for the classifier. Experimental results show that the proposed algorithm has a promising classification performance.

Design of Fuzzy Controller for the Improvement of Auto-Vehicle's Comfortability (무인 자동차의 승차감 개선을 위한 퍼지제어기의 설계)

  • Cho, H.R.;Kang, G.M.;Bae, J.I.;Jo, B.K.;Kim, Y.S.;Yang, S.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.678-680
    • /
    • 1998
  • Based on fuzzy logic algorithm this paper constructed fuzzy logic controller for automated vehicles. For passenger's convenience especially comfortability controller need to reduce the frequency of input variable's changing. So we established membership functions for comfortability as mil as speed following. It made possible to control comfortability directly. To demonstration the efficiency of fuzzy logic controller, we carried out simulation with a Automobile's transfer function. First, we designed the PID controller by using Ziegler-Nichols tunning method. Second, we calculated time response for each controller, then we compared the speed patterns of fuzzy controlled system and PID controlled system. Also we compared the difference of input variable. By comparing two controller's response, we can confirm the merit of fuzzy controller about comfortability. Fuzzy controller can reduce input changing frequency.

  • PDF

The Effectiveness of MOOS-IvP based Design of Control System for Unmanned Underwater Vehicles (MOOS-IvP를 이용한 무인잠수정 제어기 개발의 효용성)

  • Kim, Jiyeon;Lee, Dongik
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.3
    • /
    • pp.157-163
    • /
    • 2014
  • This paper demonstrates the benefit of using MOOS-IvP in the development of control system for Unmanned Underwater Vehicles(UUV). The demand for autonomy in UUVs has significantly increased due to the complexity in missions to be performed. Furthermore, the increased number of sensors and actuators that are interconnected through a network has introduced a need for a middleware platform for UUVs. In this context, MOOS-IvP, which is an open source software architecture, has been developed by several researchers from MIT, Oxford University, and NUWC. The MOOS software is a communication middleware based on the publish-subscribe architecture allowing each application to communicate through a MOOS database. The IvP Helm, which is one of the MOOS modules, publishes vehicle commands using multi-objective optimization in order to implement autonomous decision making. This paper explores the benefit of MOOS-IvP in the development of control software for UUVs by using a case study with an auto depth control system based on self-organizing fuzzy logic control. The simulation results show that the design and verification of UUV control software based on MOOS-IvP can be carried out quickly and efficiently thanks to the reuse of source codes, modular-based architecture, and the high level of scalability.

An Optimal Path Generation Method considering the Safe Maneuvering of UGV (무인지상차량의 안전주행을 고려한 최적경로 생성 방법)

  • Kwak, Kyung-Woon;Jeong, Hae-Kwan;Choe, Tok-Son;Park, Yong-Woon;Kwak, Yoon-Keun;Kim, Soo-Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.951-957
    • /
    • 2010
  • An optimal path generation method considering the safety of UGV(Unmanned Ground Vehicle) is proposed and demonstrated through examples. Among various functions of UGV, real-time obstacle avoidance is a key issue to realize realistic scenario in FCS(Future Combat Systems). A two-dimensional narrow corridor environment is considered as a test field. For each step of UGV movement, two objectives are considered: One is to minimize the distance to the target and the other to maximize the distance to the nearest point of an obstacle. A weighted objective function is used in the optimization problem. Equality and inequality constraints are taken to secure the UGV's dynamics and safety. The weighting factors are controlled by a fuzzy controller which is constructed by a fuzzy rule set and membership functions. Simulations are performed for two cases. First the weighting factors are considered as constant values to understand the characteristics of the corresponding solutions and then as variables that are adjusted by the fuzzy controller. The results are satisfactory for realistic situations considered. The proposed optimal path generation with the fuzzy control is expected to be well applicable to real environment.

A Study on the Driving Control for the Automated Guided Vehicle using Microprocessor (마이크로 프로세서를 이용한 무인운반차량의 주행제어에 관한 연구)

  • Kim, B.K.;Kim, J.T.;Kim, Y.S.;Oh, H.C.;Lee, H.K.;Ahn, D.S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.432-434
    • /
    • 1998
  • Recently, For the material transport is increased, the AGV(Automated Guided Vehicle) is the most important part in the industrial factory. So we treat the navigation control problem and experimental results using microprocessor. In navigation control, we have faced with velocity control problem related to guide path tracking problem. Carefully, In the straight line, the AGV moves at its high speed, but in the curve line, especially when the radian ratio is very big it is difficult to follow guide line. So, Using fuzzy controller we have simulated the guide path following AGV according to the varying velocity and experimented it with microprocessor.(Intel 80C196KC) Now, If we use the AGV industrial factory, we will improve the product and efficiency in spite of changing the factory environment.

  • PDF

Development of Test Stand for Altitude Engine Test of Reciprocating Engine (왕복동 엔진의 고도성능시험을 위한 시험장치 개발)

  • Lee, KyungJae;Yang, InYoung;Kim, ChunTaek;Kim, DongSik;Baek, Cheulwoo;Yang, GyaeByung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.563-571
    • /
    • 2017
  • Test stand for altitude engine test of reciprocating engine was designed, manufactured and validated by preliminary test and simple calculation. These test stand designed to interface with Altitude turbo-shaft engine test facility of Korea Aerospace Research Institute. Many limiting condition for altitude test of reciprocating engine are assumed and test stand was developed to satisfy those limits. Test stand design specially focused on a altitude, Mach number and fuel temperature control for reciprocating engine altitude test with smaller air and fuel flow than turbo-shaft engine.

  • PDF

Development of On-line Water Quality Monitoring System (온라인 수질 감시 시스템의 개발)

  • Kim, Jae-Chul;Lee, Jae-Yun;Park, Jong-Sik;Kwon, Woo-Hyen;Kim, Sung-Ho;Lee, Chan-Won
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.75-85
    • /
    • 1996
  • Real time water quality monitoring system in a large area has been developed. The system is hierarchically composed of CCMS(Central Control and Monitoring System), data loggers and water pollution measuring instruments, which enable systematic and efficient data collection and management. Also in this work we designed and constructed the instruments for measuring basic elements in water quality such as salinity, electrical conductivity, temperature, dissolved oxygen and the amount of coli in water.

  • PDF

A Study on Dynamic Performance and Response of Turbo Shaft Engine for SUAV (스마트 무인항공기용 터보축 엔진의 동적성능과 응답성에 관한 연구)

  • Park J. C.;Lee D. W.;Roh T. S.;Choi D. W.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.201-204
    • /
    • 2004
  • In this study, the GSP and in-house numerical codes have been used for analyses of the on-design, static off-design and dynamic off-design performances. Through the various missions including altitude, velocity, and power variations static engine performance have been investigated. The dynamic engine performances based on these complicated variations have been also analysed. Especially, the power, engine rpm and heat overload characteristics of a turbine have been estimated with the response time through the control of a throttle setting rather than a power setting. It could be applied to the FADEC system as an engine control device.

  • PDF