• Title/Summary/Keyword: 무인기(UAV)

Search Result 555, Processing Time 0.026 seconds

Structural Analysis of Fasteners in the Aircraft Structure of the High-Altitude Long-Endurance UAV (고고도 장기체공 무인기용 기체구조 체결부 구조 해석)

  • Kim, Hyun-gi;Kim, Sung Joon;Kim, Sung Chan;Kim, Tae-Uk
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.1
    • /
    • pp.35-41
    • /
    • 2018
  • Unmanned Aerial Vehicles (UAV) have been used for various purposes in multiple fields, such as observation, communication relaying, and information acquisition. Nowadays, UAVs must have high performance in order to acquire more precise information in larger amounts than is now possible while performing for long periods. At present, domestically, a high-altitude long-endurance UAV (HALE UAV) for long-term flight in the stratosphere has been developed in order to replace some functions of the satellite. In this study, as a part of structural soundness evaluation of the aircraft structure developed for the HALE UAV, the structural soundness of the fasteners of the fuselage and tail is evaluated by calculating the margin of safety(M.S). The result confirms the validity of the design of the fasteners in the aircraft structure of the UAV.

Design and implementation of Data Terminal Controller for UAV Using FPGA (FPGA를 이용한 무인기용 통신제어기 설계 및 구현)

  • Oh, Kyoung-Hwan;Shim, Hyung-Sik;Park, Dae-Hwan;Ra, Sung-Woong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.5
    • /
    • pp.454-460
    • /
    • 2012
  • DTC(Data Terminal Controller) for UAV has been developed using FPGA. It provides the functions of Error Correction and Time-division Mux/Demux for stable data-link. RTOS VxWorks also has been used for real-time control of data-link. FPGA Design of DTC facilitates the modification and extension of various I/O device, and VxWorks ensures real-time availability of data-link control and provides flexibilities of changes of S/W design. The DTC is expected to be deployed easily for various UAV systems.

Target Level of Safety Analysis in Airworthiness Certification for Military UAV (군용무인기의 감항인증 목표안전수준 분석)

  • Lee, Narae;Jeon, Byung-Il;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.10
    • /
    • pp.840-848
    • /
    • 2013
  • Airworthiness certification of military aircraft is a government's certification that it must have airworthiness and ability to demonstrate its requested function and performance. NATO released STANAG-4671 to establish the minimum airworthiness requirements for UAVs between 150kg and 20,000kg MTOW in 2009. Up to now, there are no clear airworthiness certification criteria and guideline for small UAV which is less than 150kg. STANAG-4671 is used for military UAV airworthiness certification in Korea as Other Airworthiness Certification Criteria. However, since STANAG-4671 requires the same Target Level of Safety without regard to MTOW, excessive Target Level of Safety or design requirements could be applied to relatively small-medium UAV. In this paper, classification and criteria of airworthiness certification for military UAV were investigated and a Target Level of Safety was analyzed based on MTOW using ground victim criteria.

Generation of System Requirements for Smart UAV (스마트 무인기 시스템 요건 도출)

  • Lee, Jung Jin
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.32-38
    • /
    • 2005
  • This paper presents the brief generation process of system requirements for Smart UAV from a development objective. The current Smat UAV requirements deal with the restricted life cycle from development to test and verification exclusive of full life cycle because of the new technology demonstration research program funded by governments. The Smart UAV system consists of flight vehicle, avionics, communication link, payload, ground control station and ground supporting system. In this paper, top-down flown requirements are introduced how to allocate to each sub-system.

  • PDF

Flight Loads Analysis of Smart UAV (스마트 무인기 비행하중 해석)

  • Shin, Jeong-Woo;Lee, Sang-Wook;Kim, Sung-Joon;Kim, Tae-Uk;Kim, Sung-Chan;Hwang, In-Hee
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.513-518
    • /
    • 2004
  • KARI(Korea Aerospace Research Institute) has developed smart unmaned aerial vehicle(UAV) since 2002. Smart UAV has tilt rotor configuration which can take off and land vertically. For designing and developing smart UAV, it is necessary to obtain design loads. ARGON which use the panel method is multidisciplinary aircraft design program developed and modified by KARI and TsAGI. Panel method is very useful to obtain aerodynamic loads, so it have been used widely for aircraft loads analysis. For flight loads analysis, we have to prepare regulations and load conditions, and then design aerodynamic panel model, mass model and structure model. In this paper, we introduce the flight loads analysis procedure briefly, and show the smart UAV loads analysis procedure and result using ARGON.

  • PDF

Study on Practical Design of Datalink in Interoperable UAV Systems (무인기 상호운용시스템에서 실용적인 데이터링크 설계방안 연구)

  • Kyu-Hwan Lee;Myeonggeun Oh;Jihoon Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.51-59
    • /
    • 2024
  • Uumanned aerial vehicle(UAV) systems have been used in various fields including industry and military. According to increasing the number of UAVs, the attention on interoperable UAV systems is increasing. In this paper, we propose the practical design of datalink in interoperable UAV systems. For practical design, we firstly review the operational scenarios in the interoperable UAV system. We then propose the system model of the datalink in interoperable UAV system. Consequently, the technical components such as the design of the network, the link management, the support of the multicast transmission, the support for autonomous mission and flight safety, and the datalink security are derived and reviewed for the practical design.

Design Parameter Analysis of a Solar-Powered, Potential Energy-Storing, Long Endurance UAV (위치에너지를 축적하는 태양동력 장기체공 무인기의 설계 인자 분석)

  • Yang, In-Young;Lee, Bo-Hwa;Chang, Byung-Hee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.10
    • /
    • pp.927-934
    • /
    • 2011
  • Design parameter analysis is performed for a solar-powered UAV, storing potential energy by climb flight. Parameters related to the flight for saving potential energy, i.e. minimum & maximum altitudes for level flight, gliding & climbing angle, design point speed & altitude, gliding & climbing start time are investigated as design parameters. Weight and size of the UAV are determined using a weight model for the components of the solar-powered UAVs. Produced energy and consumed energy are calculated using these weight and size, yielding the required weight of the battery for a given mission. Relationship between the total weight of the UAV and each parameter is investigated. For the parameters listed above, there exist their ranges only where the design is possible. And there exist optimal values of these parameters minimizing the total weight.

Area Search of Multiple UAV's based on Evolutionary Robotics (진화로봇공학 기반의 복수 무인기를 이용한 영역 탐색)

  • Oh, Soo-Hun;Suk, Jin-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.352-362
    • /
    • 2010
  • The simultaneous operation of multiple UAV's makes it possible to enhance the mission accomplishment efficiency. In order to achieve this, easily scalable control algorithms are required, and swarm intelligence having such characteristics as flexibility, robustness, decentralized control, and self-organization based on behavioral model comes into the spotlight as a practical substitute. Recently, evolutionary robotics is applied to the control of UAV's to overcome the weakness of difficulties in the logical design of behavioral rules. In this paper, a neural network controller evolved by evolutionary robotics is applied to the control of multiple UAV's which have the mission of searching limited area. Several numerical demonstrations show the proposed algorithm has superior results to those of behavior based neural network controller which is designed by intuition.

Design of Multiple Myo-Based UAV Controller (다중 Myo 기반의 UAV 제어기 설계)

  • Kim, Hyeok;Kim, Donguk;Sung, Yunsick
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.2
    • /
    • pp.51-56
    • /
    • 2017
  • Given that the utilization of Unmanned Aerial Vehicles (UAVs) is recently increased, a variety of UAV control methods are being applied. In general, it has been used a lot to directly control a UAV via manipulator. However, tangible user interface is required to control UAVs accurately. This paper proposes a method for controlling an UAV based on multiple Myos. The UAV is connected to a ground control station and then controlled by Myos. Intuitive control is possible by controlling the UAV using tangible user interface.

A Study on UAV DoA Estimation Accuracy Improvement using Monopulse Tracking (모노펄스 추적을 이용한 무인기 DoA 추정정밀도 향상 방안에 관한 연구)

  • Son, Eutum-Hyotae;Yoon, Chang-Bae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.6
    • /
    • pp.1121-1126
    • /
    • 2017
  • Various studies such as INS(: Inertial Navigation System) are conducting to estimate the position of UAV, because the GPS information of UAV is at risk like the GPS jamming. The position estimation using DoA and RTT are used to apply many radar systems, and that process can be applied in datalink of UAV. The general monopulse feed in UAV datalink is Multi-horn, because of the wide BW(: Band Width) and frequency range. And it needs wide SNR range of tracking because of the limited transmit power of airborne unit. The estimation error of position increase at low SNR, and the DoA is valid in only 3dB beam width but high SNR causes false of mainlobe detection because of large sidelobe. In this paper, We propose the method to achieve higher accuracy of DoA estimation on low SNR and review some idea that able to detect mainlobe.