• Title/Summary/Keyword: 무연 솔더

Search Result 194, Processing Time 0.018 seconds

Thermal Shock Reliability of Low Ag Composition Sn-0.3Ag-0.7Cu and Near Eutectic Sn-3.0Ag-0.5Cu Pb-free Solder Joints (Low Ag 조성의 Sn-0.3Ag-0.7Cu 및 Sn-3.0Ag-0.5Cu 무연솔더 접합부의 열충격 신뢰성)

  • Hong, Won Sik;Oh, Chul Min
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.12
    • /
    • pp.842-851
    • /
    • 2009
  • The long-term reliability of Sn-0.3wt%Ag-0.7wt%Cu solder joints was evaluated and compared with Sn-3.0wt%Ag-0.5wt%Cu under thermal shock conditions. Test vehicles were prepared to use Sn-0.3Ag-0.7Cu and Sn-3.0Ag-0.5Cu solder alloys. To compare the shear strength of the solder joints, 0603, 1005, 1608, 2012, 3216 and 4232 multi-layer ceramic chip capacitors were used. A reflow soldering process was utilized in the preparation of the test vehicles involving a FR-4 material-based printed circuit board (PCB). To compare the shear strength degradation following the thermal shock cycles, a thermal shock test was conducted up to 2,000 cycles at temperatures ranging from $-40^{\circ}C$ to $85^{\circ}C$, with a dwell time of 30 min at each temperature. The shear strength of the solder joints of the chip capacitors was measured at every 500 cycles in each case. The intermetallic compounds (IMCs) of the solder joint interfaces werealso analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results showed that the reliability of Sn-0.3Ag-0.7Cu solder joints was very close to that of Sn-3.0Ag-0.5Cu. Consequently, it was confirmed that Sn-0.3Ag-0.7Cu solder alloy with a low silver content can be replaced with Sn-3.0Ag-0.5Cu.

A Study on Low-Melting Temperature Sn-In (wt%) Pb-Free Solders for Photovoltaic Ribbons (태양광 리본용 저융점 Sn-In (wt%) 무연 솔더 연구)

  • Dong-Hyeon Shin;Seung-Han Lee;Tae-Sik Cho;Il-Sub Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.2
    • /
    • pp.186-190
    • /
    • 2023
  • We studied the various characteristics of Sn-In (wt%) Pb-free solders for photovoltaic ribbon application. The solders near the eutectic composition of Sn48In52 (wt%) existed in InSn4 and In3Sn alloy phases, and in In crystal phase, but not in Sn crystal phase. In addition, the InSn4 phase (γ-alloy) existed separately from the In3Sn (β-alloy) and the In phase confirmed by an SEM-EDS-mapping. The melting temperature of the eutectic solder of Sn48In52 (wt%) was 119.2℃, and when the Sn content decreased in reference to the eutectic composition, it slightly increased to 121.4℃, but when the Sn content increased, it remained almost constant at 119.1℃. The peel strength of the ribbon plated with the Sn42In58 (wt%) solder was 38.7 N/mm2, and it tended to increase when the Sn content increased. The peel strength of the eutectic Sn48In52 (wt%) solder was 53.6 N/mm2, and that of the Sn51In49 (wt%) solder was 61.6 N/mm2 that was the highest.

Study on the Melting Point Depression of Tin Nanoparticles Manufactured by Modified Evaporation Method (수정된 증발법을 이용하여 제작된 주석 나노입자의 녹는점 강하에 관한 연구)

  • Kim, Hyun Jin;Beak, Il Kwon;Kim, Kyu Han;Jang, Seok Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.8
    • /
    • pp.695-700
    • /
    • 2014
  • In the present study, the melting temperature depression of Sn nanoparticles manufactured using the modified evaporation method was investigated. For this purpose, a modified evaporation method with mass productivity was developed. Using the manufacturing process, Sn nanoparticles of 10 nm size was manufactured in benzyl alcohol solution to prevent oxidation. To examine the morphology and size distribution of the nanonoparticles, a transmission electron microscope was used. The melting temperature of the Sn nanoparticles was measured using a Differential scanning calorimetry (DSC) which can calculate the endothermic energy during the phase changing process and an X-ray photoelectron spectroscopy (XPS) used for observing the manufactured Sn nanoparticle compound. The melting temperature of the Sn nanoparticles was observed to be $129^{\circ}C$, which is $44^{\circ}C$ lower than that of the bulk material. Finally, the melting temperature was compared with the Gibbs Thomson and Lai's equations, which can predict the melting temperature according to the particle size. Based on the experimental results, the melting temperature of the Sn nanoparticles was found to match well with those recommended by the Lai's equation.

Mechanical Properties and Microstructural Analysis of Sn-40Bi-X Alloys (Sn-40Bi-X 합금의 기계적 물성과 미세조직 분석)

  • Lee, Jong-Hyun;Kim, Ju-Hyung;Hyun, Chang-Yong
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.79-79
    • /
    • 2010
  • 저온용 무연 솔더의 대표 조성으로 고려되고 있는 Sn-58Bi(융점: $138^{\circ}C$) 공정(eutectic) 조성은 우수한 강도에도 불구하고 연성(ductility) 측면에서의 문제점이 지속적으로 보고되고 있다. 따라서 이 합금계의 연성을 최대로 개선시킬 수 있으면서도 실제 상용화가 가능한 합금 조성의 개발 연구가 요청된다. 본 연구에서는 Sn-Bi 2원계 조성에서 최대의 연성을 나타내는 것으로 보고된 Sn-40Bi 조성에 미량의 합금원소를 첨가함으로써 최대의 연성을 확보하는 한편, 그 연성 특성이 변형속도에 어느 정도 민감한지를 인장 실험을 통해 결정하고자 하였다. 합금원소로는 0.1~0.5 wt%의 Ag, Mn, In, Cu를 선택하였으며, 인장 시편을 제조하여 $10^{-2}$, $10^{-3}$, $10^{-4}\;s^{-1}$의 3종류로 변형속도를 변형시켜가며 응력-변형 곡선(stress-strain curve)을 측정하였고, 조성별, 변형속도별로 최대인장강도(ultimate tensile stress, UTS) 및 연신율 결과들을 정리하였다. 합금원소를 첨가한 조성의 경우는 모든 시험 조건에서 Sn-40Bi보다 우수한 연신률을 나타내는 것으로 측정되었으나, $10^{-2}\;s^{-1}$의 빠른 변형속도에서는 그 향상 정도가 상대적으로 감소하는 경향이 관찰되었다. 특히 Sn-40Bi-0.5Ag 조성의 경우 느린 변형속도에서 특히 눈에 띄는 연신률 값을 나타내며, 모든 변형속도 조건에서 가장 우수한 연성을 나타내었다. 한편 Sn-40Bi-0.1Cu 조성의 경우 변형속도에 따른 연신률의 변화 정도, 즉, 변형속도에 따른 연신률의 민감도가 매우 커 $10^{-4}\;s^{-1}$ 속도에서는 Sn-40Bi-0.5Ag에 버금가는 연신률 값이 측정되었으나, $10^{-2}\;s^{-1}$ 속도에서는 가장 나쁜 연신률 특성을 보여주었다. Sn-40Bi-0.2Mn 조성은 최고의 연신률 향상 특성을 나타내지는 않았으나, In을 첨가한 경우보다는 대체적으로 우수한 연성을 나타내었다. 이상의 각 합금별 연성 특성은 인장시험 전의 미세조직 관찰 결과와 인장시험 후 파면부의 조직변화 관찰 결과로부터 해석되었다. 그 결과 석출상의 형성 여부, 인장 시험 중 재결정 조직의 형성 여부, 라멜라(lamellar) 조직의 분율과 라멜라 간격(lamellar spacing)의 정도 또는 $\beta$-Sn과 라멜라 조직 사이의 결정립계와 라멜라 조직 내 결정립계에서의 슬라이딩 모드(sliding mode) 변형 정도, 석출상의 크기와 분포 정도 등이 연신률 및 변형속도 민감도와 같은 연성 특성에 가장 큰 영향을 미치는 인자인 것으로 분석되었다.

  • PDF