• Title/Summary/Keyword: 무손실 오디오 부호화

Search Result 4, Processing Time 0.019 seconds

Lossless Coding of Audio Spectral Coefficients Using Selective Bit-Plane Coding (선택적 비트 플레인 부호화를 이용한 오디오 주파수 계수의 무손실 부호화 기술)

  • Yoo, Seung-Kwan;Park, Ho-Chong;Oh, Seoung-Jun;Ahn, Chang-Beom;Sim, Dong-Gyu;Beak, Seung-Kwon;Kang, Kyoung-Ok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.18-25
    • /
    • 2008
  • In this paper, new lossless coding method of spectral coefficients for audio codec is proposed. Conventional lossless coder uses Huffman coding utilizing the statistical characteristics of spectral coefficients, but does not provide the high coding efficiency due to its simple structure. To solve this limitation, new lossless coding scheme with better performance is proposed that consists of bit-plane transform and run-length coding. In the proposed scheme, the spectral coefficients are first transformed by bit-plane into 1-D bit-stream with better correlative properties, which is then coded intorun-length and is finally Huffman coded. In addition, the coding performance is further increased by applying the proposed bit-plane coding selectively to each group, after the entire frequency is divided into 3 groups. The performance of proposed coding scheme is measured in terms of theoretical number of bits based on the entropy, and shows at most 6% enhancement compared to that of conventional lossless coder used in AAC audio codec.

Design of a Lossless Audio Coding Using Cholesky Decomposition and Golomb-Rice Coding (콜레스키 분해와 골롬-라이스 부호화를 이용한 무손실 오디오 부호화기 설계)

  • Cheong, Cheon-Dae;Shin, Jae-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.11
    • /
    • pp.1480-1490
    • /
    • 2008
  • Design of a linear predictor and matching of an entropy coder is the art of lossless audio coding. In this paper, we use the covariance method and the Choleskey decomposition for calculating linear prediction coefficients instead of the autocorreation method and the Levinson-Durbin recursion. These results are compared to the polynomial predictor. Both of them, the predictor which has small prediction error is selected. For the entropy coding, we use the Golomb-Rice coder using the block-based parameter estimation method and the sequential adaptation method with LOCO-land RLGR. The proposed predictor and the block-based parameter estimation have $2.2879%{\sim}0.3413%$ improved compression ratios compared to FLAC lossless audio coder which use the autocorrelation method and the Levinson-Durbin recursion. The proposed predictor and the LOCO-I adaptation method could improved by $2.2879%{\sim}0.3413%$. But the proposed predictor and the RLGR adaptation method got better results with specific signals.

  • PDF

A Design of Hybrid Lossless Audio Coder (Hybrid 무손실 오디오 부호화기의 설계)

  • 박세형;신재호
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.253-260
    • /
    • 2004
  • This paper proposes a novel algorithm for hybrid lossless audio coding, which employs an integer wavelet transform and a linear prediction model. The proposed algorithm divides the input signal into flames of a proper length, decorrelates the framed data using the integer wavelet transform and linear prediction and finally entropy-codes the frame data. In particular, the adaptive Golomb-Rice coding method used for the entropy coding selects an optimal option which gives the best compression efficiency. Since the proposed algorithm uses integer operations, it significantly improves the computation speed in comparison with an algorithm using real or floating-point operations. When the coding algorithm is implemented in hardware, the system complexity as well as the power consumption is remarkably reduced. Finally, because each frame is independently coded and is byte-aligned with respect to the frame header, it is convenient to move, search, and edit the coded, compressed data.

An User Controllable Object Audio File Format and Audio Scene Description (사용자 기반 실감 객체 오디오 파일 포맷 및 오디오 장면 묘사 기법)

  • Cho, Choong-Sang;Kim, Je-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.5
    • /
    • pp.25-33
    • /
    • 2010
  • Multi-media service has been changed into user based audio services, which service supports actively user's preference and interaction with the users. In the market, multi-media products which can support the highest audio-quality by using lossless audio technology have been released and object audio music which user can select the objects has been serviced. In this paper, we design user's preference information based object audio file format and audio scene description for storage and transmission media. The designed file format is designed based on MPEG-4 file format because high-quality audio codecs in MPEG-4 audio can be easily used and the track of file format can be flexibly controlled depend on the number of the instrument in music. The encoded audio data of each objects and encoded audio scene description by binary encoding that has independent track are packed in a file. The scene description for storage media is consist of full and object scene description, the scene description for transmission media has an essential description for object audio operation and a specific description for real audio sound. The designed file format based simulator is developed and it generates an object audio file with several scene descriptions. Also, the real audio sound is serviced by the interaction with user and the unpacked scene description.