• Title/Summary/Keyword: 무선 탄성파 탐사

Search Result 4, Processing Time 0.019 seconds

Cable-free Seismic Acquisition System (무선 탄성파 탐사 시스템)

  • Lee, Donghoon;Kim, Byung-Yeop;Jang, Seonghyung
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.3
    • /
    • pp.164-173
    • /
    • 2016
  • Cable-free seismic technology is to acquire seismic data with independent receivers which are not connected by cables. This is an effective method for survey designs with less topographical conditions. With technology advancement for cable-free receivers, reliable data quality, easy deployment, and picking up the receivers, the cable-free technology has begun to apply to land seismic acquisition. In this study we introduced a cable-free seismic system and its equipment. We tried to build up the cable-free seismic technology through the field application. In the seismic tomography field applications, the seismic signals of the cable-free receiver and cabled receiver with the same distance from the source show the same phase in early stage. The difference of the first arrival times between two signals is less than 0.4 ms, which could be accepted. In the field application for seismic reflection exploration, we acquired shot gathers with different source depth and dynamite charge. The shot gathers from cable-free and cabled system are similar to each other. With an efficient method for receiver deployment and survey design, the application of the cable-free technology will increase.

Experimental Implementation of a Cableless Seismic Data Acquisition Module Using Arduino (아두이노를 활용한 무선 탄성파 자료취득 모듈 구현 실험)

  • Chanil Kim;Sangin Cho;Sukjoon Pyun
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.3
    • /
    • pp.103-113
    • /
    • 2023
  • In the oil and gas exploration market, various cableless seismic systems have been developed as an alternative to improve data acquisition efficiency. However, developing such equipment at a small scale for academic research is not available owing to highly priced commercial products. Fortunately, building and experimenting with open-source hardware enable the academic utilization of cableless seismic equipment with relatively low cost. This study aims to develop a cableless seismic acquisition module using Arduino. A cableless seismic system requires the combination of signal sensing, simple pre-processing, and data storage in a single device. A conventional geophone is used as the sensor that detects the seismic wave signal. In addition, it is connected to an Arduino circuit that plays a role in implementing the processing and storing module for the detected signals. Three main functions are implemented in the Arduino module: preprocessing, A/D conversion, and data storage. The developed single-channel module can acquire a common receiver gather from multiple source experiments.

Patent Trend and Characteristics of Major Companies in the Field of Seismic Nodal System (탄성파 탐사 무선 수진기 특허동향 및 주요 기업의 기술 분석)

  • Park, Jung Kyu
    • Journal of the Korean Society of Mineral and Energy Resources Engineers
    • /
    • v.55 no.6
    • /
    • pp.635-648
    • /
    • 2018
  • This study analyzed patent trends of seismic nodal systems and the technical characteristics of core patents of three major companies, including Fairfield, Sercel, and Wireless Seismic, to examine the focus of technology development of each company. From the analysis, the patent application growth rate of seismic nodal systems has steadily increased since early to mid-2000s and has recently shown a higher growth rate. Over the same period, the patent application growth rate of the three major companies examined was higher than that of the global trend, and patent infringement cases was also examined to evaluate market competition in this field. Analysis of the technical characteristics of the three companies' 33 core patents showed that they are generally focused on seismic signal detection. Sub-technologies included improved reliability of data acquisition, data transmission efficiency, and overall operating of the seismic nodal system. New entrants in field of technology development or manufacturing of seismic nodal systems where the market is growing must closely analyze the contents of major companies' products and patents to prevent possible patent disputes or duplicate research.

Investigation and Processing of Seismic Reflection Data Collected from a Water-Land Area Using a Land Nodal Airgun System (수륙 경계지역에서 얻어진 육상 노달 에어건 탄성파탐사 자료의 고찰 및 자료처리)

  • Lee, Donghoon;Jang, Seonghyung;Kang, Nyeonkeon;Kim, Hyun-do;Kim, Kwansoo;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.603-620
    • /
    • 2021
  • A land nodal seismic system was employed to acquire seismic reflection data using stand-alone cable-free receivers in a land-river area. Acquiring reliable data using this technology is very cost effective, as it avoids topographic problems in the deployment and collection of receivers. The land nodal airgun system deployed on the mouth of the Hyungsan River (in Pohang, Gyeongsangbuk Province) used airgun sources in the river and receivers on the riverbank, with subparallel source and receiver lines, approximately 120 m-spaced. Seismic data collected on the riverbank are characterized by a low signal-to-noise (S/N) and inconsistent reflection events. Most of the events are represented by hyperbola in the field records, including direct waves, guided waves, air waves, and Scholte surface waves, in contrast to the straight lines in the data collected conventionally where source and receiver lines are coincident. The processing strategy included enhancing the signal behind the low-frequency large-amplitude noise with a cascaded application of bandpass and f-k filters for the attenuation of air waves. Static time delays caused by the cross-offset distance between sources and receivers are corrected, with a focus on mapping the shallow reflections obscured by guided wave and air wave noise. A new time-distance equation and curve for direct and air waves are suggested for the correction of the static time delay caused by the cross-offset between source and receiver. Investigation of the minimum cross-offset gathers shows well-aligned shallow reflections around 200 ms after time-shift correction. This time-delay static correction based on the direct wave is found essential to improving the data from parallel source and receiver lines. Data acquisition and processing strategies developed in this study for land nodal airgun seismic systems will be readily applicable to seismic data from land-sea areas when high-resolution signal data becomes available in the future for investigation of shallow gas reservoirs, faults, and engineering designs for the development of coastal areas.