• Title/Summary/Keyword: 무선측위정보

Search Result 165, Processing Time 0.021 seconds

Design and Implementation of Open Service Platform for LBS (LBS를 위한 개방형 서비스 플랫폼의 설계 및 구현)

  • Min, Kyoung-Wook;Han, Eun-Young;Kim, Gwang-Soo
    • The KIPS Transactions:PartD
    • /
    • v.11D no.6
    • /
    • pp.1247-1258
    • /
    • 2004
  • The LBS(Location-Based Service), which is based on individual's mobility, is required increasingly as mobile telecommunication and various infrastructures have developed rapidly. The technologies for LBS are location determination technology, service platform technology, contents provider technology and moving object database technology generally. Among these, service platform must be interoperable with location gate-way server and provide common function of billing, authentification, protect location information, privacy control, location trigger and intelligent acquisition and so on. The TTA(Telecommunications Technology Association) published specification that defines a standard protocol for safe and simple interface between LBS client and LBS platform and the OpenLS(Open Location Service) in OGC (Open GIS Consortium) released implementation specifications for providing Location based core services. In this paper, we implemented service platform for LBS which is able to interoperable with location gateway server and contents provider and is caracterized as follows. First, it could require and response location information from different types of location gateway server with same interface. Second, it complies with the standard interfaces with OpenLS 4 contents providers for core LBS. Third, it could provide location of wired phone as well as wireless mobile terminal compling with the standard protocol. Last, it could provide trajectorH information based past location as well as current location, because it is able to interoperable with moving object DBMS. This paper contributes to the construction and practical use of LBS by providing the method of implementation of service platform for LBS.

The Development of Tool Position Tracking system Based on UWB for Automotive Assembly Process (자동차 조립공정 작업의 실시간 모니터링을 위한 UWB 기반 공구위치 추적 시스템 개발)

  • Jeong, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.657-661
    • /
    • 2019
  • The automobile industry is representative industry of complex characteristics, which employing 10 million people, the largest manufacturing industry over $1 trillion in sales and assembling with 20,000 parts to make complete automobile and automobile assembly processes have a lower automation rate than other processes, which is labor intensive processes of assembling to painted body with 3,000 components such as seats, built-in, instrument panel, glass, engine, transmission units. However, the current assembly process does not have real-time monitoring. If a tool position tracking system is adapted to assembly process for directing consistent work order and checking for missing work, the productivity and quality improvement of the assembly process can be achieved by preemptively preventing possible defects in the assembly process. So, this paper aims to develop a Tool Position tracking system using UWB(Ultra Wide Band) with trilateration and proves their effectiveness for real-time monitoring of automotive assembly process.

Real-Time Monitoring and Buffering Strategy of Moving Object Databases on Cluster-based Distributed Computing Architecture (클러스터 기반 분산 컴퓨팅 구조에서의 이동 객체 데이타베이스의 실시간 모니터링과 버퍼링 기법)

  • Kim, Sang-Woo;Jeon, Se-Gil;Park, Seung-Yong;Lee, Chung-Woo;Hwang, Jae-Il;Nah, Yun-Mook
    • Journal of Korea Spatial Information System Society
    • /
    • v.8 no.2 s.17
    • /
    • pp.75-89
    • /
    • 2006
  • LBS (Location-Based Service) systems have become a serious subject for research and development since recent rapid advances in wireless communication technologies and position measurement technologies such as global positioning system. The architecture named the GALIS (Gracefully Aging Location Information System) has been suggested which is a cluster-based distributed computing system architecture to overcome performance losses and to efficiently handle a large volume of data, at least millions. The GALIS consists of SLDS and LLDS. The SLDS manages current location information of moving objects and the LLDS manages past location information of moving objects. In this thesis, we implement a monitoring technique for the GALIS prototype, to allow dynamic load balancing among multiple computing nodes by keeping track of the load of each node in real-time during the location data management and spatio-temporal query processing. We also propose a buffering technique which efficiently manages the query results having overlapped query regions to improve query processing performance of the GALIS. The proposed scheme reduces query processing time by eliminating unnecessary query execution on the overlapped regions with the previous queries.

  • PDF

Development and Verification of A Module for Positioning Buried Persons in Collapsed Area (붕괴지역의 매몰자 위치측위를 위한 모듈 개발 및 검증)

  • Moon, Hyoun-Seok;Lee, Woo-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.427-436
    • /
    • 2016
  • Due to disasters such as earthquakes and landslides in urban areas, persons have been buried inside collapsed buildings and structures. Rescuers have mainly utilized detection equipment by applying sound, video and electric waves, but these are expensive and due to the directional approaches onto the collapsed site, secondary collapse risk can arise. In addition, due to poor utilization of such equipment, new human detection technology with quick and high reliability has not been utilized. To address these issues, this study develops a wireless signal-based human detection module that can be loaded into an Unmanned Aerial Vehicle (UAV). The human detection module searches for the 3D location for buried persons by collecting Wi-Fi signal and barometer sensors data transmitted from the mobile phones. This module can gain diverse information from mobile phones for buried persons in real time. We present a development framework of the module that provides 3D location data with more reliable information by delivering the collected data into a local computer in the ground. This study verified the application feasibility of the developed module in a real collapsed area. Therefore, it is expected that these results can be used as a core technology for the quick detection of buried persons' location and for relieving them after disasters that induce building collapses.

Development of a Location Data Management System for Mass Moving Objects (대용량 이동 객체 위치 데이타 관리 시스템의 개발)

  • Kim, Dong-Oh;Ju, Sung-Wan;Jang, In-Sung;Han, Ki-Joon
    • Journal of Korea Spatial Information System Society
    • /
    • v.7 no.1 s.13
    • /
    • pp.63-76
    • /
    • 2005
  • Recently, the wireless positioning techniques and mobile computing techniques were developed with rapidly to use location data of moving objects. Also, the demand for LBS(Location Based Services) which uses location data of moving objects is increasing rapidly. In order to support various LBS, a system that can store and retrieve location data of moving objects efficiently is required necessarily. The more the number of moving objects is numerous and the more periodical sampling of locations is frequent, the more location data of moving objects become very large. Hence the system should be able to efficiently manage mass location data, support various spatio-temporal queries for LBS, and solve the uncertainty problem of moving objects. Therefore, in this paper, we presented a hash technique, a clustering technique and a trajectory search technique to manage location data of moving objects efficiently And, we have developed a Mass Moving Object Location Data Management System, which is a disk-based system, that can store and retrieve location data of mass moving objects efficiently and support the query for spatio-temporal data and the past location data with uncertainty. By analying the performance of the Mass Moving Object Locations Management system and the SQL-Server, we can find that the performance of our system for storing and retrieving location data of moving objects was about 5% and 300% better than the SQL-Server, repectively.

  • PDF