• 제목/요약/키워드: 무기 및 표적 할당

검색결과 8건 처리시간 0.019초

맵리듀스 환경에서 유전자 알고리즘 기반의 동적 무기할당 알고리즘 (A Dynamic Weapon Allocation Algorithm using Genetic Algorithm in Mapreduce Environments)

  • 박준호;김지은;조길석
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2014년도 추계 종합학술대회 논문집
    • /
    • pp.469-470
    • /
    • 2014
  • 동적 무기할당 문제는 전형적인 NP-완전 문제로써 위협하는 표적에 대해 아군의 무기를 적절히 할당하는 문제이다. 이는 매우 시간 제약적인 문제로써 가능한 단 시간 내에 적절한 무기할당 및 대응을 도출하여야 하지만 매우 유동적인 전장 환경에서 이는 쉽지 않다. 최근 이와 같이 높은 복잡성을 가진 빅데이터를 기반으로 하는 응용에서 분산 처리 시스템을 활용한 분석 및 처리에 대한 연구가 큰 주목을 받고 있고, 대표적인 프레임워크로써 맵리듀스가 활용되고 있다. 그러나 맵리듀스는 전체 데이터에 대한 일괄 처리 기능만을 제공하므로 동적 데이터에 대한 유전자 알고리즘의 수행이 쉽지 않고, 최종 결과 도출에 여전히 많은 시간을 필요로 한다. 본 논문에서는 맵리듀스 환경에서 유전자 알고리즘 기반의 동적 무기할당 알고리즘을 제안한다. 제안하는 기법에서는 맵리듀스 환경에서 유전자 알고리즘의 연속적인 데이터 처리의 지원을 위해 새롭게 추가 및 제거된 무기-표적 데이터만을 분석하고, 이를 기 분석 완료된 데이터와 결합하여 최종 결과를 도출한다. 이를 통해, 신속한 동적무기할당의 수행이 가능하다.

  • PDF

다표적-다무장 환경에서 신속 대응을 위한 무장 할당 알고리즘 (A Weapon Assignment Algorithm for Rapid Reaction in Multi-Target and Multi-Weapon Environments)

  • 윤문형
    • 한국콘텐츠학회논문지
    • /
    • 제18권8호
    • /
    • pp.118-126
    • /
    • 2018
  • 교전 초기에 높은 위협도를 가진 다수의 표적에 대해 적을 신속하게 제압하기 위해서는 단 시간 내에 가능한 많은 무장을 발사할 수 있도록 적시에 효과적인 무장 할당을 수립하여 교전 효과를 극대화하는 것이 중요하다. 본 논문에서는 다표적 다무장 환경에서 신속 대응 무기 체계를 위한 무장 할당 알고리즘을 제안한다. 제안하는 알고리즘에서는 무장군 별 방위각 크기 기준으로 표적을 정렬하여 방위각 기준으로 표적군-무장군 간 집단 할당을 수행한 후, 산출된 표적의 위협도 기준으로 표적-무장 간 개별 할당을 수행하여 복잡도 낮은 연산으로 신속 대응이 가능한 사격 계획을 수립하여 교전 효과를 극대화한다. 본 논문에서는 제안하는 알고리즘의 시뮬레이션 및 가시화를 통해 성능 평가 및 검증을 수행하였다. 성능 평가 결과, 제안하는 알고리즘은 대규모의 전장 환경에서도 빠른 시간 내에 높은 표적 할당률을 보이는 효과적인 무장할당을 수행함으로써 신속 발사 무기 체계에 적용할 시에 높은 효용성 및 효과가 기대된다.

근사적 동적계획을 활용한 요격통제 및 동시교전 효과분석 (Approximate Dynamic Programming Based Interceptor Fire Control and Effectiveness Analysis for M-To-M Engagement)

  • 이창석;김주현;최봉완;김경택
    • 한국항공우주학회지
    • /
    • 제50권4호
    • /
    • pp.287-295
    • /
    • 2022
  • 저고도 궤적의 장사정포 위협이 대두됨에 따라 이를 방어할 요격 시스템의 개발이 시작될 예정이다. 이러한 장사정포의 공격을 방어하는 문제는 전형적인 동적 무기 표적 할당 문제다. 동적 무기 표적 할당 문제에서는 한 시점에서의 의사결정 결과가 이후 시점의 의사결정 과정에 영향을 주며, 이는 마코브 의사결정 모형의 특징이기도 하다. 장사정포의 공격을 방어하기 위한 의사결정 과정에 허용되는 시간은 공격자와 방어자의 거리를 고려할 때 저고도 궤적의 동시 다발성 발사체에 대한 대응은 수 초 이내에 결정되어야 하나, 짧은 시간 내에 마코브 의사결정 과정으로 최적해를 구하는 것은 불가능하다. 본 논문에서는 장사정포 공격을 방어하는 동적 무기 표적 할당 문제를 마코브 의사결정 문제로 나타내고, 3가지 시나리오를 작성한 후 근사적 동적계획 방법을 적용하여 요격이 가능 시간 안에 해의 도출이 가능한지를 시뮬레이션을 통하여 확인하였다. 도출된 해의 품질을 검증하기 위하여 각 시나리오에 대하여 근사적 동적계획을 적용한 결과와 Shoot-Shoot-Look 방법을 적용한 결과를 비교하였다. 시뮬레이션 결과, 장사정포의 방어 시나리오에 대하여 근사적 동적계획의 결과가 Shoot-Shoot-Look 방법을 이용한 결과보다 우수함을 보였다.

공격편대군-표적 최적 할당을 위한 수리모형 및 병렬 하이브리드 유전자 알고리즘 (New Mathematical Model and Parallel Hybrid Genetic Algorithm for the Optimal Assignment of Strike packages to Targets)

  • 김흥섭;조용남
    • 한국군사과학기술학회지
    • /
    • 제20권4호
    • /
    • pp.566-578
    • /
    • 2017
  • For optimizing the operation plan when strike packages attack multiple targets, this article suggests a new mathematical model and a parallel hybrid genetic algorithm (PHGA) as a solution methodology. In the model, a package can assault multiple targets on a sortie and permitted the use of mixed munitions for a target. Furthermore, because the survival probability of a package depends on a flight route, it is formulated as a mixed integer programming which is synthesized the models for vehicle routing and weapon-target assignment. The hybrid strategy of the solution method (PHGA) is also implemented by the separation of functions of a GA and an exact solution method using ILOG CPLEX. The GA searches the flight routes of packages, and CPLEX assigns the munitions of a package to the targets on its way. The parallelism enhances the likelihood seeking the optimal solution via the collaboration among the HGAs.

장갑차량 공격용 지능형 포탄의 전시 소요량 산정 모형에 관한 연구 (Study of Estimation Model for Wartime Stockpile Requirement of Intelligent Ammunition against Enemy Armored Vehicles)

  • 조홍용;정병희
    • 한국국방경영분석학회지
    • /
    • 제34권2호
    • /
    • pp.143-162
    • /
    • 2008
  • 이 연구는 현재 개발이 진행 중인 장갑차량 상부 공격용 지능형 탄약을 포함한 155mm 포병 탄약의 전시소요량을 산정하는 방법론을 정립하려는 것이다. 종래의 워게임 시뮬레이션에 의한 방법에서는 장갑표적 공격용 무기체계별 기대점유비율이 지상군 및 공군간에 과도하게 차이가 발생하고 있다. 또한 상향식 소요산정방법은 최소소요량에 비하여 너무나 과도하게 산출하는 경향이 있으므로 이러한 점들을 보완하기 위하여 표적 수량에 따른 무기체계별 할당에 의한 하향식 모형을 구성한 것이다. 이모형이 워게임에 의한 상향식 소요산정보다는 더 믿을 만한 결과를 산출한다.

무기할당문제에서 유전자 알고리즘의 성능을 개선하기 위한 population 초기화 방법에 관한 연구 (A Study of population Initialization Method to improve a Genetic Algorithm on the Weapon Target Allocation problem)

  • 홍성삼;한명묵;최혁진;문창민
    • 한국지능시스템학회논문지
    • /
    • 제22권5호
    • /
    • pp.540-548
    • /
    • 2012
  • 무기할당 문제(Weapon Target Allocation : WTA)는 전형적인 NP-Complete 문제로 공중에서 위협하는 표적에 대해 아군의 무기를 적절히 할당하는 문제이다. 이러한 NP-Complete 문제들은 주로 휴리스틱 알고리즘을 이용하여 최적해를 찾는다. 유전자 알고리즘은 대표적인 휴리스틱 알고리즘으로 다양한 도메인에서 우수한 성능을 보여주는 휴리스틱 알고리즘이다. 유전자 알고리즘의 단계 중에 population 초기화는 최초 염색체를 결정하는 문제로 유전자 알고리즘의 해의 질을 높일 수 있고, 탐색성능을 높일 수 있으나 많은 연구가 이루어지고 있지 않는 분야이다. 따라서 본 논문에서는 WTA 문제를 해결하기 위해 유전자 알고리즘의 성능을 향상시키기 위한 population 초기화 알고리즘을 제안하고자 한다. 제안하는 알고리즘은 초기화할 때 WTA 문제 도메인의 특성을 반영하고, 우성유전자를 상속받는다. 또한, 문제 공간에서의 탐색 공간을 넓게 선정하여 질이 좋은 해를 효율적으로 찾을 수 있도록 하였다. 본 논문에서는 제안하는 알고리즘과 다른 알고리즘과의 다양한 속성의 비교분석 및 실험을 통해 성능을 분석하여 제안하는 알고리즘의 우수성을 검증하였다. 실험 결과 제안하는 알고리즘이 WTA 문제 해결에서 다른 방법들에 비해 좋은 성능을 보였다. 특히, 제안하는 알고리즘은 문제 상황에 따라 RMI 수치를 조정하여 적응성 있게 적용할 수 있기 때문에, 문제의 상황이 다양한 WTA 문제 도메인에 적용하기 적합한 알고리즘이다.

유도탄의 실시간 표적 재지정을 위한 랜덤 포레스트 기법과 시뮬레이션 기반 효과 분석 (Random Forest Method and Simulation-based Effect Analysis for Real-time Target Re-designation in Missile Flight)

  • 이한강;장재연;안재민;김창욱
    • 한국시뮬레이션학회논문지
    • /
    • 제27권2호
    • /
    • pp.35-48
    • /
    • 2018
  • 북한의 전술탄도미사일(TBM, tactical ballistic missile)에 대한 방공 분야 연구는 빠른 속도로 변화하는 전장 환경을 고려해야 한다. 아군 유도탄의 표적 재지정 연구는 동적인 전장에 대한 대응뿐만 아니라 아군 방어 자산의 효과적인 운용을 가능하게 한다. 현재까지 진행된 연구는 의사 결정 과정에서 중요한 역할을 하는 TBM의 명중 확률이 고정된 값이기 때문에 실시간 전장 상황을 대변하지 못한다. 따라서 본 연구는 실시간 전장 환경을 고려한 명중 확률을 기반으로 의사 결정을 내리는 표적 재지정 알고리즘을 제안한다. 제안 방법론은 랜덤 포레스트와 무빙윈도우(moving window) 기법을 사용하여 현재 TBM의 위치 및 속도 정보로 TBM의 예상 궤적을 예측하는 궤적 예측 모형을 포함한다. 예상 명중 확률은 궤적 예측 모형과 유도탄의 시뮬레이터를 통해서 계산할 수 있으며, 계산된 명중 확률은 유도탄에 대한 표적 재지정 알고리즘의 의사결정 기준이 된다. 실험에서는 TBM 궤적 예측 모형에 사용한 방법론의 타당성이 검증되었으며, 표적 재지정 의사 결정 과정에서 제안된 모델을 통해 명중 확률을 사용하는 것의 우수성이 확인되었다.

베이지안 네트워크 학습을 이용한 방공 무기 체계에서의 위협평가 기법연구 (A Study of Threat Evaluation using Learning Bayesian Network on Air Defense)

  • 최보민;한명묵
    • 한국지능시스템학회논문지
    • /
    • 제22권6호
    • /
    • pp.715-721
    • /
    • 2012
  • 위협평가는 전장상황을 인지하여 아군의 자산을 보호하고 무장 할당의 효율적 의사결정에 도움을 줄 수 있는 기술로서, 교전을 실시할 트랙들에 대한 우선순위를 결정하는 알고리즘이다. 즉, 다 표적 교전상황에서의 신속한 의사결정을 도와 아군의 피해를 최소한으로 하고 적군에 대한 공격을 최대한으로 하는 것을 목적으로 한다. 위협평가에 이용되는 위협치 산출은 전장에서 발생하는 센서 데이터들을 통해 연산된다. 그러나 전장상황은 예측 불허하고 다양한 변수가 일어날 가능성이 높으므로 이러한 데이터들의 변질 및 유실은 위협평가를 통한 의사결정에 혼란을 더할 수 있다. 그러므로 본 논문에서는 불완전한 몇 몇 데이터만을 가지고도 신뢰도 높은 결과를 산출하는 데 유리한 베이지안 네트워크의 추론기능과 전장 환경변화에 네트워크의 적응을 가능하게 해주는 학습기능을 위협평가 분야에 적용하여 보다 견고한 위협치를 산출할 것을 제안하여 실험을 통해 이에 대한 성능을 입증하였다.