• 제목/요약/키워드: 무기화

검색결과 1,222건 처리시간 0.02초

특이산성답(特異酸性畓) 토양(土壤)의 개량(改良)을 위(爲)한 석회시용(石灰施用) 효과(?果)에 관(關)한 연구(硏究) (Studies of Liming Effect on the Improvement of an Acid Sulphate Paddy Soil)

  • 박영선
    • Applied Biological Chemistry
    • /
    • 제17권3호
    • /
    • pp.193-218
    • /
    • 1974
  • 본(本) 연구(硏究)는 산도(酸度)가 극(甚)히 높고 수도(水稻)의 생육(生育)이 저조(低調)하며 수량(收量)이 낮은 특이산성답(特異酸性畓) 토양(土壞)에 대(對)한 특성조사(特性調査)와 그 개량(改良)의 목적(目的)으로 석회(石灰)를 시용(施用)하였을 때 토양(土壞)의 화학적(化學的) 성질(性質)과 수도묘(水稻苗)의 생육(生育)에 미치는 영향(影響)을 검사(檢討) 연구(硏究)하고져 하였다. 즉(則) 특이산성답토양(特異酸性畓土壞)에서 석회(石灰)의 시용(施用)이 그 토양(土壤)의 산도(酸度), 산화환원전위차(酸化還元電位差), 2가철(價鐵), 알루미늄 및 황산함량(黃酸含量)의 변화(變化)와 토양인(土壞燐)의 화학적(化學的) 형태(形態)에 미치는 영향(影響)을 담수(湛水) 및 건조(乾燥)와 같은 환경(環境)의 변화하(變化下)에서 추구(追究)하였으며 한편 수도(水稻)의 묘생육(苗生育)에 대(對)하여 인산(燐酸), 철(鐵) 및 알루미늄의 개량적(改良的) 또는 저해적(沮害的) 효과(效果)를 석회(石灰)의 영향하(影響下)에서 검사(檢討)한 바 그 결과(結果)를 요약(要約)하면 다음과 같다. 1. 특이산성답(特異酸性畓) 심토(心土)는 석회(石灰)가 시용(施用)되어도 건조(乾燥)되면 다시 pH가 저하(低下)된다. 2. Eh는 담수(湛水) 5일경(日頃)에 최저(最低)로 되고 석회시용(石灰施用)으로 크게 하강(下降)되나 건조(乾燥)되면 다시 상승(上昇)된다. 3. 수용성(水用性) 및 Morgan 용액가용(溶液可溶) 2 가철(價鐵)의 함량(含量)은 담수(湛水) 15일경(15日頃)에 최고(最高)로 되며 수용성(水用性) 2 가철(價鐵)만이 석회시용(石灰施用)에 의(依)하여 크게 감소(減少)된다. 4. 수용성(水用性) 및 Morgan 용액가용(溶液可溶) 알루미늄 함량(含量)은 담수(湛水)와 석회시용(石灰施用)으로 감소(減少)되며 건조(乾燥)에 의(依)하여 약간 증가(增加)되는 경향(傾向)이다. 5. 석회(石灰)를 시용(施用)한 특이산성답(特異酸性畓) 토양(土壞)에서 수용성(水用性) 석회(石灰)와 황산함량(黃酸含量) 간(間)에는 고도(高度)의 유의성(有意性) 있는 부상관(負相關) 관계(關係)가 있으며 석회시용(石灰施用)은 토양(土壞)의 황산함량(黃酸含量)을 감소(減少)시킨다. 6. 전린(全燐)은 특이산성답(特異酸性畓) 표토(表土)에서 496.3ppm, 심토(心土)에서 387.5ppm이었으며 무기인(無機燐)의 함량(含量)은 Fe-P>Occ.Fe-P>Ca-P>Occ.Al-P>Al-P 의 순(順)으로 Fe-P가 가장 많았다. 7. 석회시용(石灰施用)은 토양(土壞)의 Ca-P나 Al-P 등(等)을 크게 증가(增加)시키고 Occ. Fe-P와 Occ. Al-P도 증가(增加) 시키나 Fe-P는 감소(減少)시키는데 그 정도(程度)는 토양(土壞)에 따라 다르다. 8. 수도묘(水稻苗)의 건물중(乾物重)에 대(對)한 인산효과(燐酸?果)는 현저(顯著)하며 석회(石灰)를 시용(施用)하지 않을때는 인산(燐酸) 흡수계수(吸收係數)의 6.8%, 석회(石灰)를 시용(施用)할 때는 인산(燐酸) 흡수계수(吸收係數)의 10.0% 해당량(該當量)에서 가장 많은 건물중(乾物重)을 생산(生産)하였다. 9. 석회(石灰) 시용(施用)은 수도묘중(水稻苗中)의 석회(石灰) 및 규산(珪酸)의 함량(含量)과 그 흡수량(吸收量)을 증가(增加)시키나 철(鐵) 및 알루미늄함량(含量)과 그 흡수량(吸收量)을 감소(減少)시킨다. 묘중(苗中)의 인산함량(燐酸含量)이나 흡수량(吸收量)은 인산시용(燐酸施用)으로 증가(增加)되나 철함량(鐵含量)은 감소(減少)되며, 철(鐵)이나 알루미늄의 시용(施用)은 이들의 함량(含量)과 흡수량(吸收量)을 증가(增加)시키나 인산함량(燐酸含量)과 흡수량(吸收量)은 감소(減少)시킨다. 10. 석회(石灰)의 시용(施用)은 과잉(過剩)의 철(鐵)과 알루미늄에 의(依)한 피해(被害)를 크게 경감(輕滅)시킨다. 11. 인산(燐酸) 시용시(施用時) 묘(苗)의 건물중(乾物重)은 묘중(苗中)의 인산(燐酸), 석회(石灰) 및 규산(珪酸)의 흡수량(吸收量)과 고도(高度)의 유의성(有意性)있는 정상관관계(正相關關係)가 있었고 철(鐵) 및 알루미늄 시용시(施用時) 건물중(乾物重)은 석회(石灰), 규산(珪酸)의 함량(含量) 및 그 흡수량(吸收量)과는 유의성(有意性) 있는 정상관(正相關), 철(鐵) 및 알루미늄의 함량(含量)과 이들의 흡수량(吸收量)과는 유의성(有意性)있는 부상관(負相關) 관계(關係)가 있었다. 12. 석회(石灰)와 인산(燐酸)을 시용(施用)하였을 때 묘(苗)의 건물중(乾物重)은 시험(試驗) 후(後) 토양(土壤)의 pH 및 Morgan 용액(溶液) 가용(可溶) 석회(石灰) 함량(含量)과 고도(高度)의 유의성(有意性)있는 정상관(正相關) 관계(關係)가 있었고 석회(石灰)와 철(鐵) 및 알루미늄을 시용(施用)한 시험(試驗) 후(後) 토양(土壤)의 pH와 석회(石灰) 및 규산함량(珪酸含量)과도 유의성(有意性)있는 정상관(正相關), 철(鐵) 및 알루미늄의 함량(含量)과는 부(負)의 상관관계(相關關係)가 있었다.

  • PDF

느타리버섯의 생리화학적성질(生理化學的性質) 및 재배(栽培)에 관(關)한 연구(硏究) (Studies on the physio-chemical properties and the cultivation of oyster mushroom(Pleurotus ostreatus))

  • 홍재식
    • Applied Biological Chemistry
    • /
    • 제21권3호
    • /
    • pp.150-184
    • /
    • 1978
  • 합성배지(合成培地)에서 느타리 버섯균(菌)의 균사생육(菌絲生育)과 자실체형성(子實體形成)에 대한 영양적(營養的) 특성(特性)과 생리화학적(生理化學的) 제성질(諸性質)을 구명(究明)하고 볏짚과 톱밥 양(兩) 배지(培地)에서 느타리 버섯의 대량(大量) 생산(生産)을 위한 배양조건(培養條件)을 밝히고, 느타리 버섯 재배기간(栽培期間) 중 배지(培地)와 버섯중의 각종(各種) 성분(成分)의 추이(推移)를 알고자 실험을 수행하여 다음과 같은 결과를 얻었다. 1. 탄소원(炭素源) 중 mannitol과 서은 균사생육(菌絲生育)과 자실체(子實體) 형성(形成)이 빠르고 자실체(子實體)의 수량(收量)이 많았으나 lactose와 rhamnose는 균사(菌絲) 조차도 생육하지 못하였다. 또한 구연산, 호박산, ethyl alcohol 및 glycerol에서는 자실체(子實體) 형성(形成)이 매우 빈약(貧弱)하였고, 식초산, 개미산, 푸마르산, n-butyl alcohol, iso-butyl alcohol 및 n-propyl alcohol은 균사생육(菌絲生育)을 저해(阻害)하였다. 2. 질소원(窒素源)중 peptone은 균사생육(菌絲生育)과 자실체(子實體) 형성(形成)이 빠르고 자실체(子實體)의 수량(收量)이 많았으나 DL-alanine, asparagine, L-aspartic acid, glycine및 serine은 자실체형성(子實體形成)이 매우 빈약(貧弱)하였으며 아질산태질소(亞窒酸態窒素), L-tryptophan 및 L-tyrosine은 균(菌)의 생육을 저해(沮害)하였다. 또한 peptone에 무기태질소(無機態窒素)와 아미노산(酸)을 혼용(混用)한 결과 $(NH_4)_2SO_4$, $NH_4$-tartarate, DL-alanine및 L-leucine에서는 자실체(子實體)의 수량(收量)이 약 10% 증가되었고, L-aspartic acid는 약 15%. L-arginine은 약20%, L-glutamic acid와 L-lysine은 약 25%증가 되었다. 3. C/N율(率) 15.23에서 자실체(子實體) 형성(形成)은 빠르나 자실체(子實體)의 수량(收量)은 감소(減少)되었으며, C/N율(率) 11.42에서는 자실체형성(子實體形成)은 늦으나 자실체(子實體)의 수량(收量)은 증가되는 경향이 있었다. 또한 동일 C/N율(率)에서도 mannitol과 peptone의 농도(濃度)가 높은 편이 수량(收量)이 증가되었다. 그러므로 자실체(子實體)의 수량(收量)과 자실체형성(子實體形成) 소요일(所要日)의 관점(觀點)에서 보면 C/N율(率) 30.46이 어느정도 적당(適當)한 것 같다. 4. Thiamine $50{\mu}g%,\;KH_2PO_4$ 0.2%, $MgSO_4{\cdot}7H_2O$$0.02{\sim}0.03%$일때 균사(菌絲)와 자실체(子實體) 생육(生育)이 우수(優秀)하였으며 미량원소(微量元素)로서는 $FeSO_4{\cdot}7H_2O$,\;ZnSO_4{\cdot}7H_2O$$MnSO_4{\cdot}5H_2O$가 공존(共存)하면 생육촉진(生育促進)의 상승효과(相乘效果)가 인정되었으나 3이원소(元素)중 Mn이 결핍(缺乏)하면 균사(菌絲)와 자실체(子實體)의 생육(生育)이 다소 저하되었다. 이들 염류(鹽類)의 최적농도(最適濃度)는 각각 0.02mg%이었다. 5. Cytosine $0.2{\sim}1mg%$와 indole acetic acid 0.01mg%에서 균사량(菌絲量)은 증가되었으나 자실체(子實體)의 수량(收量)에는 효과 없었으며 그밖의 purine염기(鹽基), pyrimidine염기(鹽基) 및 식물(植物) hormone은 영향이 없었다. 6. 광조사(光照射영)에 의해서 균사생육(菌絲生育)은 저해(沮害)되었으며 영양생장(營養生長)의 후기에 광(光)을 조사(照射)하면 원기형성(原基形成)이 유도(誘導)되었다. 광(光)의 최적조도(最適照度)는 $100{\sim}500lux$, 조사시간(照射時間)은 매일 $6{\sim}12$시간이었고, 이 이상(以上)의 조도(照度)에서는 오히려 저해(沮害)되었으며, 암소(暗所)에서는 원기(原基)가 형성(形成)되지 않고 영양생장(營養生長)만 계속되었다. 7. 균사생육(菌絲生育)과 자실체(子實體) 형성(形成)의 최적온도(最適溫度)는 각각 $25^{\circ}C,\;10{\sim}15^{\circ}C$이었고 최적(最適)의 pH범위(範圍)는 $5.0{\sim}6.5$이었으며 균사(菌絲)는 $7{s\im}10$일간 배양(培養)했을 때가 자실체(子實體) 형성(形成)이 제일 우수(優秀)하였다. 또한 배지량(培地量)이 적을수록 자실체(子實體) 형성(形成)은 빠르나 자실체(子實體)의 수량(收量)은 감소(減少)되었고 배지량(培地量)이 많을수록 자실체(子實體) 형성(形成)은 늦은반면에 그 수량(收量)은 증가 되었으며, 원기형성(原基形成)은 $CO_2$에 의하여 저해(沮害)되었다. 8. 볏짚과 톱밥 병 배지(培地)에서 균사생육(菌絲生育)의 최적(最適) 수분량(水分量)은 70%이상 이었으며 미강(米糠) 10%를 배지(培地)에 첨가(添加)했을 때는 균사생육(菌絲生育)과 자실체형성(子實體形成)이 우수(優秀)하였다. 그리고 양배지(兩培地)에 $CaCo_3$를 단독(單獨)으로 첨가했을 때는 유효(有?)하였으나 미강(米糠)과 함께 첨가했을때는 효과(?果)를 볼 수 없었다. 9. 재배(栽培) 실험(實驗)에서 느타리 버섯의 전체(全體) 수량(收量)은 볏짚배지(培地)에서 $14.99kg/m^2$, 톱밥배지(培地)에서 $6.52kg/m^2$이었고 양배지(兩培地) 모두 90%이상이 1,2주기(週期)에서 얻어졌으며 볏짚배지(培地)(dry matter $20.96kg/m^2$)의 전수율(全收率)을 톱밥배지(培地)(dry matter $20.83kg/m^2$)의 약 2.3배(倍)이었다. 10. 재배기간(栽培期間)중 양(兩) 배지(培地)의 일반 성분을 고형물(固形物) 기준(基準)으로 볼때 회분(灰分)의 변화는 적었으나 유기물(有機物)은 감소(減少)되었으며, 수분(水分)은 종균접종시(種菌接種時) 약 79%이던것이 균사번식기간(菌絲繁殖期間)중에 다소 감소(減少)되었고 그 이후부터는 큰 변화가 없었다. 11, 종균접종시(種菌接種時) 부터 4주기(週期) 수확(收穫) 후까지 배지(培地) 성분(成分)의 소실(消失)을 보면 볏짚배지(培地)는 고형물(固形物) 약 19.7%, 유기물(有機物) 약 19.3%, 질소(窒素) 약 40%가 소실(消失)되었으며, 톱밥 배지(培地)에서는 고형물(固形物) 약 7.5%, 유기물(有機物) 약 7.6%, 질소(窒素) 약 20%가 소실(消失)되었다. 버섯 1kg을 생산(生産)하기 위하여 볏짚 배지(培地)에서는 유기물(有機物) 약 232g, 질소(窒素) 약 7.0g이 소실(消失)되었고, 톱밥 배지(培地)에서는 유기물(有機物) 약 235g, 질소(窒素) 약 6.8g이 소실(消失)되었으며, 버섯 1kg당(當) 함유된 유기물(有機物)은 각각 82.4g, 82.3g, 질소(窒素)는 각각 5.6g, 5.4g이었다. 12. 양배지(兩培地)의 전질소(全窒素)는 점차적으로 감소(減少)되었고 불용성질소(不溶性窒素)의 절대감소량(絶對減少量)은 수용성질소(水溶性窒素)보다 컸으며 아미노태(態) 질소(窒素)는 3주기(週期)까지는 계속 증가 되었으나 그 이후부터는 감소(減少)되었다. 13. 볏짚 배지(培地)에서는 재배기간(栽培其間)에 소실(消失)된 전(全) pentosan의 28%, ${\alpha}$-cellulose는 13.8%가 균사생육(菌絲生育)중에 소실(消失)되었고 톱밥배지(培地)에서는 전(全) pentosan의 24.1%, ${\alpha}$-cellulose는 11.9%가 소실(消失)되었으며 lignin은 양(兩) 배지(培地)의 2주기(週期) 수확(收穫)부터 다소 감소(減少)되었다. 환원당(還元糖), trehalose 및 mannitol은 계속 증가의 추세를 보였으며 C/N율(率)은 볏짚 배지(培地)에서 종균(種菌) 접종시(接種時) 33.2이었던 것이 폐상시(廢床時)에는 30.3이었고, 톱밥 배지(培地)는 61.3이었던 것이 60.0 이었다. 14. 양(兩) 배지(培地)에서 P, K, Mn, Zn은 감소(減少)되었고, Mg, Ca, Cu는 불규칙하게 변화되었으며, Fe는 증가되는 경향이었다. 15. 재배기간(栽培期間)중 각종효소(各種酵素)의 활성(活性)은 톱밥배지(培地)보다 볏짚배지(培地)가 월등히 높았다. 즉 CMC 당화활성(糖化活性)과 CMC액화활성(液化活性)은 균사번식(菌絲繁殖)후부터 2주기수확(週期收穫)까지는 양배지(兩培地)에서 점차적으로 증가 되었으나 그 이후부터는 감소(減少)되었다. xylanase활성(活性)은 1주기(週期)보다 2주기(週期)에서 급격히 상승되었고 3주기(週期)가 되면서 볏짚 배지(培地)에서는 신속히 감소(減少)되었으나 톱밥 배지(培地)에서는 이와같은 감소(減少)를 볼 수 없었다. protease 활성(活性)은 균사번식(菌絲繁殖)후 최고의 활성도(活性度)를 보였다가 점차로 감소(減少)하였다. 또한 볏짚 배지(培地)의 pH는 종균접종시(種菌接種時) 6.3이던 것이 4주기(週期)후는 5.0이었고 톱밥배지(培地)의 pH는 5.7에서 4.9로 떨어졌다. 16. 볏짚 배지(培地)에서 생육한 버섯은 섬유소(纖維素)를 제외한 모든 성분량(成分量)이 톱밥배지(培地)에서 생육한 버섯보다 높은 경향이있었으며 양배지(兩培地)에서 버섯의 각주기별(各週期別) 성분(成分) 변화는 $1{\sim}3$주기(週期)까지는 거의 비슷하였으나 4주기(週期)에서는 다소 감소(減少)의 추세를 보였다.

  • PDF