• Title/Summary/Keyword: 무기합성

Search Result 330, Processing Time 0.027 seconds

부부과학자-서정헌 ㆍ백명현박사부부

  • Korean Federation of Science and Technology Societies
    • The Science & Technology
    • /
    • v.31 no.6 s.349
    • /
    • pp.82-83
    • /
    • 1998
  • 서울대 화학과 서정헌 교수와 화학교육과 백명현 교수부부는 서울대 화학과 동기생이자 실험실 짝으로 인연을 맺었다. 서교수는 요즈음 인공효소와 바닷물에서 우라늄을 추출해 내는 연구에 빠져 있으며 백교수는 무기재료에 이용될 수 있는 기능성 초분자 및 거대고리분자의 설계, 합성연구로 학문적 성과를 인정받고 있다.

  • PDF

Review : Ionic Liquids as Green Solvent (리뷰 : 녹색용매로서의 이온성액체 기술동향)

  • Lee, Junwung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.690-702
    • /
    • 2013
  • Ionic liquids(ILs) have been the most investigated chemicals among green solvents including water, glycerol, supercritical carbon dioxdie($scCO_2$). ILs are attracting organic as well as inorganic chemicals because most ionic liquids' vapor pressures are very low so that ILs are liquids phase at ambient conditions. ILs are composed of various anions and cations, thus chemists can design functionalized solvents and/or catalysts that can be used in specific synthetic reactions by means of combinations of different ions. Many scientists believe ILs being green materials because of its low vapor pressure as well as the flexibility in controlling the chemical and physical properties. In this review the author describes recent development of ILs focused on imidazolium and pyridinium ILs which are being most investigated presently. In order to apply this materials in industrial level, the toxicity matter must be resolved first. In this regard, the author describes recent research trend regarding environmental effects by ILs as well as some meaningful results as well.

Successive Cancellation Decoding of Polar Codes : Channel Synthesis and Decomposition (극 부호의 연속 제거 복호 : 채널의 합성과 분리)

  • Lee, Moon-Ho;Li, Jun;Park, Ju-Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.4
    • /
    • pp.24-36
    • /
    • 2011
  • In this paper, we verify the channel synthesis and decomposition of polar codes using successive cancellation decoding algorithm over binary discrete memoryless symmetric channel by modifying Arikan's algebraic formular on encoding and decoding of polar codes. In addition, we found that information bits are sent by efficiently consisting of polar codes with their size $2^n$ through polarizing matrix ${G_2}^{{\otimes}n}$ over binary discrete memoryless symmetric channel W. Expecially, if $N{\geq}2$, the complexity of Arikan's encoding and decoding for polar codes is O($Nlog_2N$). Furthermore, we found that polar codes are one of the solution to the challenging problems for the multipoint communication.

Synthesis of CuO from organic-inorganic hybrid (유기-무기 복합소재로부터 CuO합성)

  • Huh Young-Duk;Kweon Seok-Soon;Kuk Won-Kwen
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.5
    • /
    • pp.193-197
    • /
    • 2005
  • CuO has been synthesized using the layered organic-inorganic hybrids, $Cu_2(OH)_3(CH_3COO){\cdot}H_2O$ as precursor. The simple thermal decomposition of $Cu_2(OH)_3(CH_3COO){\cdot}H_2O$ is used without any external organic templates. This method provides large-scale production at a low cost of the single-crystalline CuO particles. The morphology of CuO aggregated particles is strongly dependent on structure of the precursor.

Enhanced Dewaterability of Sewage Sludge by a Natural Inorganic Conditioner (무기개량제를 이용한 하수슬러지의 탈수능 개선)

  • Nam, Se-Yong;Kim, Jeong-Ho;Kim, Sang-Hyoun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.10
    • /
    • pp.651-655
    • /
    • 2012
  • This study aimed to investigate the effect of an inorganic conditioner composed of natural inorganic materials on the dewaterbility of sewage sludge and compare the performance with those of conventional organic polymeric conditioners. A dosage of 2.0 mg inorganic conditioner/g sludge TS decreased time to filter test (TTF), specific resistance to filtration (SRF), water content of dewatered sludge cake, turbidity from 146 to 41 sec, from $8.3{\times}10^{14}$ to $2.4{\times}10^{14}$ m/kg, from 82.1 to 77.1%, from 112 to 61.1 NTU, respectively, which was compatible to the conventional cation organic polymer. An inorganic conditioner would be used in sewage sludge treatment as a suitable alternative conditioner. Regression analysis showed a strong relationship among TTF, SRF, and water content.

Components Design for Guided Weapon System according to Resolution based on Base System Model (기본체계모델 기반 해상도 별 유도 무기체계 컴포넌트 설계)

  • Moon, Kyujin;An, Yu-Young;Jeong, Ui-Taek;Ryoo, Chang-Kyung
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.3
    • /
    • pp.11-23
    • /
    • 2019
  • An AddSIM(Adaptive distributed and parallel Simulation environment for Interoperable and reusable Models) is developed to construct a composite environment that can be used in the overall stage from military demand analysis to test and evaluation. In addition, a base system model(BSM), which is a component model of the weapon system with standardized hierarchies, has been developed. This paper describes the critical design of BSM for the guided weapon system that can be operated in AddSIM. The guided weapon system BSM is designed for reusability and interoperability, and to have the same interface for assembly, even if the subcomponents have different resolution. Then, each subcomponent is defined and implemented according to the component resolution classification scheme. Finally, Combinations of subcomponents have been used to construct the guided weapon system of various resolution and the performance is compared and analyzed through simulation.

A Study on the Ionic Conducting Characteristics of Electrolyte Membranes Containing KI and $I_2$ for Dye Sensitized Solar Cell (염료감응형 태양전지를 위한 KI 및 $I_2$를 포함하는 유기/무기 복합 전해질막의 이온전도특성에 대한 연구)

  • Kang, Tae-Un;Shin, Chun-Hwa;Choi, Mi-Jung;Koo, Ja-Kyung;Cho, Nam-Jun
    • Membrane Journal
    • /
    • v.20 no.1
    • /
    • pp.21-28
    • /
    • 2010
  • Organic/inorganic composite electrolyte membranes were prepared for dye sensitized solar cell (DSSC). Poly (ethylene glycol) (PEG)s with various molecular weight (600, 1,500, 2,000 and 3,400) were ethoxysilated to fabricate organic/inorganic composite materials through sol-gel processes. The electrolyte membranes were produced by doping the composite materials with KI and $I_2$, and their ionic conducting behaviors were investigated. The ionic conductivity of the composite membrane was highly affected by PEG molecular weight. The highest conductivity was shown by the composite membrane prepared with PEG with the molecular weight of 2,000. The composite electrolyte membranes showed considerable improvement of ionic conductivity. Compared to PEO electrolyte membranes, the composite electrolyte membrane by PEG, MW 2,000 showed much higher ionic conductivity.

A Study on the Organic/inorganic Composite Electrolyte Membranes for Dye Sensitized Solar Cell (염료감응형 태양전지를 위한 유기/무기 복합 전해질막에 대한 연구)

  • Koo, Ja-Kyung;Choi, Mi-Jung;Shin, Chun-Hwa;Kang, Tae-Un;Cho, Nam-Jun
    • Membrane Journal
    • /
    • v.18 no.4
    • /
    • pp.345-353
    • /
    • 2008
  • Organic/inorganic composite electrolyte membranes were prepared for dye sensitized solar cell (DSSC). Polyethylene Glycol (PEG)s with various molecular weight (400, 600, 1,500 and 3,400) was ethoxysilated to fabricate organic/inorganic composite materials through sol-gel processes. The electrolyte membranes were produced by doping the composite materials with NaI and $I_2$, and their ionic conducting behavior was investigated. The ionic conductivity of the composite electrolyte was highly affected by the PEG molecular weight, and the highest conductivity was shown by the composite membrane prepared with PEG with the molecular weight of 1,500. The composite electrolyte membranes showed considerable improvement of ionic conductivity. Compared to PEO electrolyte membranes, the composite electrolyte membrane prepared by PEG, MW 1,500, showed much higher ionic conductivity.