• Title/Summary/Keyword: 무기접착재

Search Result 5, Processing Time 0.018 seconds

Physical and Environmental Properties According to Borax Addition Ratios of Inorganic Filling Adhesive using Magnesia Silicate Phosphate (마그네시아 실리케이트 인산염을 활용한 무기충전 접착재의 붕사 첨가율에 따른 물리·환경적 특성)

  • Kim, Tae-Hyun;Shin, Jin-Hyun;Lee, Sang-So
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.2
    • /
    • pp.141-147
    • /
    • 2017
  • The purpose of this study is to develop an inorganic filling adhesive using MKP and borax based on Dead-burn magnesia and fly ash. First, basic experiments was conducted to derive the proper addition rate of MKP. And this experiment was carried out according to addition ratio of borax. The test items are measured for pot life, flexural strength, compressive strength, adhesive strength, tensile strength, ratio of temperature change, ratio of hardening shrinkage, radon gas and formaldehyde emission. As a result, the proper addition rate of phosphate was 35%. The pot time is about 10minutes, 15minutes and 25minutes according to addition rate of borax. The flexural strength and compressive strength were obtained at 12hours for minimum flexural strength of 8.0MPa and minimum compressive strength of 31.0MPa. The tensile strength was the least 4.1MPa, and the ratio of hardening shrinkage was maximum 2.4% and ratio of heat change was maximum - 0.3%, which satisfied all of the quality standards of 'KS F 4923' (epoxy resin for repairing concrete structures). Both Radon gas and formaldehyde emission was not detected.

Strength properties of inorganic adhesives using dead burned magnesia and phosphate according to addition ratio of borax (사소마그네시아와 인산염을 활용한 무기접착재의 붕사첨가율에 따른 강도특성)

  • Kim, Dae-Yeon;Pyeon, Su-Jeong;Lim, Jeong-Jun;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.48-49
    • /
    • 2018
  • Recently the old buildings have been increasing and increasing reconstruction. As a result, the frequency of use of architectural adhesives has increased. Adhesives are not only used for bonding but also for building materials used in various fields. However, since the adhesive is made of an organic material, it causes various skin diseases and sick house syndrome, and when a fire occurs, harmful substances are generated, and incomplete combustion may cause personal injury. Therefore, in this study, to solve the disadvantages of conventional adhesives, we tried to develop inorganic adhesives using inorganic materials.

  • PDF

Bonding Stress Analysis of Cable Fairings used in Small Guided Missiles and Strength Tests of Bonding Materials (유도무기 케이블 페어링의 강도 해석 및 접착재 강도 시험)

  • Goo, N.-S.;Yoo, K.-J.;Shin, Y.-S.;Lee, Y.-H.;Cheong, H.-Y.;Kim, B.-H.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.6
    • /
    • pp.76-82
    • /
    • 2005
  • Cable fairings of guided missiles are generally used for protection of electric cables under aerodynamic heating and mechanical loading. The stress distributions between a cable fairing and missile main body along a cable fairing are necessary for its design. In this paper, a method for bonding stress and strength analysis of a cable fairing has been investigated and its computer program developed. Tensile and three-point bending tests of generally used bonding materials were also conducted to supply basic material properties for design of cable fairings.

Properties of Inorganic Adhesives according to Phosphate Type and Borax Ratio (인산염 종류와 붕사 첨가율에 따른 무기접착재의 특성)

  • Song, Ha-Young;Lim, Jeong-Jun;Khil, Bae-Su;Lee, Sang-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.4
    • /
    • pp.289-297
    • /
    • 2019
  • Epoxy resin adhesives are currently used as adhesives in buildings. Epoxy resin adhesives, which are organic materials, generate harmful substances when producing adhesives, and toxic substances are high in the residential space after installation. In addition, a large amount of carbon monoxide generated from organic materials in the case of a building fire leads to personal injury. This study evaluates the feasibility of inorganic adhesives using pure inorganic materials such as magnesia, phosphate, and borax as inorganic adhesives to replace existing organic adhesives. As a result of the experiment on the selection of adequate phosphate and the characteristics of the addition rate of borax used as a retarder, the potassium phosphate monobasic was obtained as a suitable phosphate and the characteristics according to the borax addition rate were compared with the quality standard of KS F 4923 The hardening shrinkage and heat change rate satisfied the quality standards. The tensile strength was satisfactory when the borax addition rate was 4% or more, but the adhesive strength did not meet the quality standards. Further studies are needed to improve adhesion strength.

Strength properties of magnesium oxide matrix according to type of phosphate (인산염 종류에 따른 산화마그네슘 경화체의 강도 특성)

  • Lim, Jeong-Jun;Pyeon, Su-Jeong;Kim, Dae-Yeon;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.79-80
    • /
    • 2018
  • Recently, the interest in remodeling of new and old buildings is increasing worldwide. As a result, the frequency of use of architectural adhesives has increased. Currently, adhesives used in buildings are made of organic materials in most cases, and epoxy resin adhesives are most widely used. However, epoxy resin adhesives contain formaldehyde and VOCs in the room during construction, which can cause sick house syndrome. In case of building fire, it may cause damage due to carbon monoxide generated from organic materials. It is urgent to study the problem of epoxy fill adhesive made of such organic materials. Therefore, the purpose of this study is to investigate the effect of the adhesion of epoxy resin adhesive, which is a problem of epoxy resin adhesive, which is an existing organic adhesive by using inorganic materials such as magnesia and phosphate, And the inorganic adhesive which does not emit the release amount as an inorganic material.

  • PDF