• Title/Summary/Keyword: 무기염

Search Result 542, Processing Time 0.03 seconds

Methodological Comparison of the Quantification of Total Carbon and Organic Carbon in Marine Sediment (해양 퇴적물내 총탄소 및 유기탄소의 분석기법 고찰)

  • Kim, Kyeong-Hong;Son, Seung-Kyu;Son, Ju-Won;Ju, Se-Jong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.4
    • /
    • pp.235-242
    • /
    • 2006
  • The precise estimation of total and organic carbon contents in sediments is fundamental to understand the benthic environment. To test the precision and accuracy of CHN analyzer and the procedure to quantify total and organic carbon contents(using in-situ acidification with sulfurous acid($H_2SO_3$)) in the sediment, the reference material s such as Acetanilide($C_8H_9NO$), Sulfanilammide($C_6H_8N_2O_2S$), and BCSS-1(standard estuary sediment) were used. The results indicate that CHN analyzer to quantify carbon and nitrogen content has high precision(percent error=3.29%) and accuracy(relative standard deviation=1.26%). Additionally, we conducted the instrumental comparison of carbon values analyzed using CHN analyzer and Coulometeric Carbon Analyzer. Total carbon contents measured from two different instruments were highly correlated($R^2=0.9993$, n=84, p<0.0001) with a linear relationship and show no significant differences(paired t-test, p=0.0003). The organic carbon contents from two instruments also showed the similar results with a significant linear relationship($R^2=0.8867$, n=84, p<0.0001) and no significant differences(paired t-test, p<0.0001). Although it is possible to overestimate organic carbon contents for some sediment types having high inorganic carbon contents(such as calcareous ooze) due to procedural and analytical errors, analysis of organic carbon contents in sediments using CHN Analyzer and current procedures seems to provide the best estimates. Therefore, we recommend that this method can be applied to measure the carbon content in normal any sediment samples and are considered to be one of the best procedure far routine analysis of total and organic carbon.

  • PDF

Optimization of Culture Conditions for D-Tagatose Production from D-Galactose by Enterobacter agglomerans. (Entrobacter agglomerans에 의한 D-Galactose로부터 D-Tagatose 생산조건의 최적화)

  • 오덕근;노회진;김상용;노봉수
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.3
    • /
    • pp.250-256
    • /
    • 1998
  • D-Tagatose production from D-galactose was investigated using 35 type strains of American Culture Type Collection (ATCC) and Korean Collection for Type Cultures (KCTC) which have potential to produce D-tagatose. Enterobacter agglomerans ATCC 27987 was selected as a D-tagatose producing strain due to its short fermentation time and high production of D-tagatose. Optimization of the culture conditions for D-tagatose production by E. agglomerans ATCC 27987 was performed. Among various carbon sources, D-galactose was the most effective carbon source for D-tagatose production. As the D-galactose concentration was increased, cell growth and D-tagatose production increased. Effect of nitrogen sources on D-tagatose production was studied. Of inorganic nitrogen sources, ammonium sulfate was effective one for D-tagatose production and yeast extract was the most suitable organic nitrogen nutrient. The concentrations of inorganic compounds such as KH$_2$PO$_4$, K$_2$HPO$_4$, and MgSO$_4$$.$7H$_2$O were also optimized for D-tagatose production. The optimal medium was determined to contain D-galactose of 20 g/l, yeast extract of 5.0 g/l, (NH$_4$)$_2$SO$_4$ of 2.0 g/l, KH$_2$PO$_4$ of 5.0 g/l, K$_2$HPO of 5.0 g/l, and MgSO$_4$$.$7H$_2$O of 5 mg/l. The optimal environmental conditions in a 250-$m\ell$ flask were found to be pH of 6.0, temperature of 30$^{\circ}C$, and agitation speed of 150 rpm. D-tagatose of 0.41 g/l could be obtained in 24 h from 20 g/l D-galactose at the optimal culture condition without induction and cell concentration.

  • PDF

Distribution of Larval Fishes off the East Sea, Korea (동해 근해에 출현하는 어류 자치어 분포 특성)

  • Choi, Hee Chan;Jung, Hae Kun;Cho, Jeong Hyun;Youn, Seok Hyun;Oh, Hyun Ju
    • Korean Journal of Ichthyology
    • /
    • v.34 no.3
    • /
    • pp.186-200
    • /
    • 2022
  • In order to understand the species composition and distribution characteristics of larval assemblages in the East Sea, Korea, larvae were collected at 13 stations every other month from February to December 2018. Fish larvae were identified through DNA barcoding along with morphological methods, and as the result, a total of 104 taxonomic groups appeared during the survey. Among these, Engraulis japonicus, which accounted for 76.2% of the total population, was the most dominant species, followed by Maurolicus japonicus, which accounted for 15.0%. In addition, Ammodytes personatus, Champsodon snyderi, Scomber japonicus and Echelus uropterus appeared more frequently than other taxa. The above six species accounted for 93.2% of the total catch. The number of taxa and the amount of larvae collected in the survey area were higher during the high water temperature periods (June to October) than during the low water temperature periods (February, April and December). Analysis of similarity (ANOSIM) showed a statistically significant difference in monthly larval assemblages. The results of the canonical correspondence analysis (CCA) show that the distributions of larval community were mainly affected by sea surface temperature during low water temperature periods, and various environmental factors such as salinity, dry weight of zooplankton, and the concentrations of nutrients during high water temperature periods.

Stabilization/Solidification of Radioactive LiCl-KCl Waste Salt by Using SiO2-Al2O3-P2O5 (SAP) Inorganic Composite: Part 2. The Effect of SAP Composition on Stabilization/Solidification (SiO2-Al2O3-P2O5 (SAP) 무기복합체를 이용한 LiCl-KCl 방사성 폐기물의 안정화/고형화: Part 2. SAP조성에 따른 안정화/고형화특성 변화)

  • Ahn, Soo-Na;Park, Hwan-Seo;Cho, In-Hak;Kim, In-Tae;Cho, Yong-Zun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.1
    • /
    • pp.27-36
    • /
    • 2012
  • Metal chloride waste is generated as a main waste streams in a series of electrolytic processes of a pyrochemical process. Different from carbonate or nitrate salt, metal chloride is not decomposed into oxide and chlorine but it is just vaporized. Also, it has low compatibility with conventional silicate glasses. Our research group adapted the dechlorination approach for the immobilization of waste salt. In this study, the composition of SAP ($SiO_2-Al_2O_3-P_2O_5$) was adjusted to enhance the reactivity and to simplify the solidification process as a subsequent research. The addition of $Fe_2O_3$ into the basic SAP decreased the SAP/Salt ratio in weight from 3 for SAP 1071 to 2.25 for M-SAP( Fe=0.1). The experimental results indicated that the addition of $Fe_2O_3$ increased the reactivity of M-SAP with LiCl-KCl but the reactivity gradually decreased above Fe=0.1. Also, introducing $B_2O_3$ into M-SAP requires no glass binder for the consolidation of reaction products. U-SAP ($SiO_2-Al_2O_3-Fe_2O_3-P_2O_5-B_2O_3$) could effectively dechlorinate the LiCl-KCl waste and its reaction product could be consolidated as a monolithic form without a glass binder. The leaching test result indicated that U-SAP 1071 was more durable than other SAPs wasteform. By using U-SAP, 1 g of waste salt could generated 3~4 g of wasteform for final disposal. The final volume would be about 3~4 times lower than the glass-bonded sodalite. From these results, it could be concluded that the dechlorination approach using U-SAP would be one of prospective methods to manage the volatile waste salt.

Spatial Characteristics of Pollutant Concentrations in the Streams of Shihwa Lake (시화호 유입하천의 수질오염물질 농도에 관한 연구)

  • Jang, Jeong-Ik;Han, Ihn-Sup;Kim, Kyung-Tae;Ra, Kong-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.4
    • /
    • pp.289-299
    • /
    • 2011
  • We studied the characteristics of pollutant concentrations in 9 streams that flow into Shihwa Lake in order to provide the scientific data for effective implementation of total pollution loads management system (TPLMS) of the Lake. Suspended solid (SS), chemical oxygen demand (COD), dissolved nutrients ($NO_2$, $NO_3$, $NH_4$, $PO_4$ and $SiO_2$), total phosphorus (TP) and total nitrogen (TN) in stream water from industrial complexes, urban and agricultural regions were determined. Pollutant concentrations in December were higher than that in other sampling periods. COD concentration from industrial complex region with average of 12.6 mg/L was 2 times higher those from urban region (6.6 mg/L) and agricultural region (5.9 mg/L). TP concentration from industrial region also showed higher concentration than other regions. TN concentration in stream water was 5.89 mg/L for industrial region, 3.02 mg/L for urban region and 5.27 mg/L for agricultural region, respectively, suggesting inflow of TN due to fertilizer usage in agricultural field. Relative percentage of nitrogen compounds in TN follows the sequence: $NH_4$ (35.1%) > $NO_2$ (20.0%) > DON (22.8%) > PON (8.9%) > $NO_2$ (3.2%). Concentrations of dissolved nutrients, TP and TN in stream water were 3.2~37.2 times higher than that in Shihwa Lake seawater, therefore large amount of pollutants may be directly entered into Shihwa Lake without any treatment. For Gunja stream of industrial region, pollutants at midstream showed relatively higher concentration compared to upstream and downstream. It is necessary to manage the illegal discharging of sewage and waste water. Our results provide valuable informations on the estimation and reduction of total pollutant loads in the process of establishing adequately strategic and implemental plan of Shihwa Lake TPLMS.

Evaluation of the Giggenbach Bottle Method with Artificial Fumarolic Gases (인공 분기공 가스를 이용한 Giggenbach bottle 법의 평가)

  • Lee, Sangchul;Kang, Jungchun;Yun, Sung Hyo;Jeong, Hoon Young
    • Journal of the Korean earth science society
    • /
    • v.34 no.7
    • /
    • pp.681-692
    • /
    • 2013
  • We aimed to evaluate the effectiveness of the Giggenbach bottle method and develop the related pretreatment and analytical methods using artificial fumarolic gases. The artificial fumarolic gases were generated by mixing $CO_2$, CO, $H_2S$, $SO_2$, $H_2$, and $CH_4$ gas streams with a $N_2$ stream sparged through an acidic medium containing HCl and HF, with their compositions varied by adjusting the gas flow rates. The resultant fumarolic gases were collected into an evacuated bottle partially filled with a NaOH absorption solution. While non-condensible gases such as CO, $H_2S$, and $CH_4$ accumulated in the headspace of the bottle, acidic components including $CO_2$, $SO_2$, HCl, and HF that were dissolved into the alkaline solution. Like other acidic components, $H_2S$ also dissolved into the solution, but it reacted with dissolved $Cd^{2+}$ to precipitate as CdS when $Cd(CH_3COO)_2$ was added. The non-condensible gases were analyzed on a gas chromatography. Then, CdS precipitates were separated from the alkaline solution by filtration, and they were pretreated with $H_2O_2$ to oxidize CdS-bound sulfide into sulfate. In addition, a portion of the solution was also pretreated with $H_2O_2$ to oxidize sulfite to sulfate. Following the pretreatment, the resultant samples were analyzed for $SO_4^{2-}$, $Cl^-$ and $F^-$ on an ion chromatography. In the meanwhile, dissolved $CO_2$ was analyzed on a total organic carbon-inorganic carbon analyzer without such pretreatment. According to our experimental results, the measured concentrations of the fumarolic gases were shown to be proportional to the gas flow rates, indicating that the Giggenbach bottle method is adequate for monitoring volcanic gas. The pretreatment and analytical methods employed in this study may also enhance the accuracy and reproducibility of the Giggenbach bottle method.

SOD and Inorganic Nutrient Fluxes from Sediment in the Downstream of the Nagdong River (낙동강 하류 수계에서 저질퇴적층의 SOD와 영양염 용출)

  • Jung, Ha-Young;Cho, Kyung-Je
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.3 s.104
    • /
    • pp.322-335
    • /
    • 2003
  • Nutrient fluxes and sediment oxygen demands (SOD) were measured with intact sediment cores collected from three stations in the downstream of Nagdong River. The sediments were subjected to controlled oxic and hypoxic conditions and temperature gradients (from $10^{\circ}C$ to $30^{\circ}C$) of the overlying waters in laboratory batch system. The effect of temperature and labile layer thickness of the sediment on SOD were examined. $PO_4\;^{3-}$ and $NH_4\;^+$ fluxes were elevated above $20^{\circ}C$ and large mobilities were observed when they were coupled with a hypoxic and high-temperature condition. In the well oxygenated conditions, $PO_4\;^{3-}$ fluxes were negative or negligible but $NH_4\;^+$ fluxes ranged from 1.3 mg N $m^{-2}\;hr^{-1}$ to 2.3 $m^{-2}\;hr^{-1}$. Temperature quotients($Q_{10}$) of $PO_4\;^{3-}$ fluxes were 3.7 ${\sim}$ 7.3 ranges to have the most high values. $PO_4\;^{3-}$ and $NH_4\;^+$ fluxes had the logarithmic increase with temperature, while $NO_3\;^-$ was negatively absorbed to the sediment and linearly correlated with the temperature. $SiO_2$ fluxes showed no difference among oxic and hypoxic conditions and sediment texture. The nutrient fluxes would be closely correlated with pore water chemistry of sediments and activated by the top sediment layer composition such as labile organic matters or algal detritus. The ecological implications of the nutrient fluxes were discussed in terms of sources and sinks of nutrients coupled to algal productions in the Nagdong River.

Dynamics of Phytoplankton and Zooplankton of a Shallow Eutrophic Lake (lake llgam) (수심이 얕은 부영양 인공호(일감호)의 동 ${\cdot}$ 식물플랑크톤 동태학)

  • Kim, Ho-Sub;Park, Je-Chul;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.3 s.104
    • /
    • pp.286-294
    • /
    • 2003
  • This study was attempted to understand seasonal dynamics of phyto- and zooplankton communities in shallow, eutrophic Lake llgam and to compare them with the PEG (Plankton Ecology Group) model. Seasonal succession pattern of phytoplankton community was similar to PEG model as Chlorophyceae and Baciliphyceae increase during spring and autumn fellowed by increase of Cyanophyceae. However, based on the cell density and biomass, a dominant phytoplankton community differed with PEG model: Cyanophyceae had been a dominant community throughout a year, except for ice-cover period during which Chlorophyceae was a dominant group. In spring, when ice melted and dissolved nutrients in water column increased, the increase of Chlorophyceae occurred: when nutrients (DIN and DIP) rapidly decreased, Cyanophyceae increase occurred. Microcystis, Oscillatoria, Lyngbya, Merismopedia were maior dominant species of Cyanophyceae and their cell density and/or biomass was the highest in October 2000 (12.9${\pm}$5.8${\times}10^5$ cells/ml, 3.5${\pm}$0.9${\times}10^3{\mu}gC/l$). Cyanophyceae biomass showed positive relationship with chlorophyll a ($r^2$ = 0.71,P< 0.001) and TP concentration ($r^2$ = 0.62, P< 0.001). Small-sized rotifers such as Keratella cochlearis, increased between March and May when Chlorophyceae increased. Both high standing crop of copepods and cladocerans, such as Diaphanosoma brachyrum and Bosmina longirostris occurred between June and September accompanied with the increase of Dinophyceae and Bacillariophyceae. There was no evidence that clear-water phase was caused by zooplankton grazing. The diversity and evenness index of phyto- and/or zooplankton increased with chlorophyll a concentration. These results suggest zooplankton grazing and limiting nutrient deficiency could lead to change of phytoplankton biomass, but not the phytoplankton community in Lake llgam.

Hydrochemical and Isotopic Characteristics of Major Streams in the Daejeon Area (대전지역 도심하천의 수리화학적 및 동위원소적 특성)

  • Jeong, Chan-Ho;Moon, Byung-Jin
    • Economic and Environmental Geology
    • /
    • v.42 no.4
    • /
    • pp.315-333
    • /
    • 2009
  • In this study, the hydrochemical and the isotopic characteristics of major streams in the Daejeon area were investigated during rainy and dry seasons. The stream water shows the electrical conductivity of the range of $37{\sim}527{\mu}s$/cm, and pH $6.21{\sim}9.83$. The chemical composition of stream waters can be grouped as three types: the upper streams of Ca(Mg)-$HCO_3$ type, Ca(Mg)-$SO_4(Cl)$ type of middle streams flowing through urban area, and Na(Ca)-$HCO_3$(Cl, $SO_4$) type of the down streams. Based on in-situ investigation, the high pH of stream waters flowing through urban area is likely to be caused by the inflow of a synthetic detergent discharging from the apartment complex. The electrical conductivity of stream waters at a dry season is higher than those of at a rainy season. We suggest that the hydro-chemical composition of stream waters in the Daejeon area was affected by the discharging water from the sewage treatment facilities and anthropogenic contaminants as well as the interaction with soil and rocks. ${\delta}D$ and ${\delta}^{18}O$ values of the stream waters show the relationship of ${\delta}D=6.45{\delta}^{18}O-7.4$, which is plotted at a lower area than global meteoric water line(GMWL) of Craig(1961). It is likely that this isotopic range results from the evaporation effect of stram waters and the change of an air mass. The isotope value shows an increasing trend from upper stream to lower stream, that reflects the isotopic altitude effect. The relationship between ${\delta}^{13}C$ and $EpCO_2$ indicates that the carbon as bicarbonate in stream water is mainly originated from $CO_2$ in the air and organic materials. The increasing trend of ${\delta}^{13}C$ value from upper stream waters to lower stream waters can be attributed to the following reasons: (1) an increasing dissolution of $CO_2$ gas from a contaminated air in downtown area of the Daejeon, and (2) the increment of an inorganic carbon of groundwater inflowed into stream by base flow. Based on the relationship between ${\delta}^{34}S$ and $SO_4$ of stream waters, the stream waters can be divided into four groups. $SO_4$ content increases as a following order: upper and middle Gab stream${\delta}^{34}S$ value decreases as above order. ${\delta}^{34}S$ value indicates that sulfur of stream waters is mainly originated from atmosphere, and is additionally supplied by pyrite source according to the increase of sulfate content. The sulfur isotope analysis of a synthetic detergent and sewage water as a potential source of the sulfur in stream waters is furtherly needed.

Five-year monitoring of microbial ecosystem dynamics in the coastal waters of the Yeongheungdo island, Incheon, Korea (대한민국 인천 영흥도 인근 해역 미소생태계의 5년간의 군집구조 변화 모니터링)

  • Sae-Hee Kim;Jin Ho Kim;Yoon-Ho Kang;Bum Soo Park;Myung-Soo Han;Jae-Hyoung Joo
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.3
    • /
    • pp.179-192
    • /
    • 2023
  • In this study, changes in the microbial ecosystem of the Yeongheungdo island coastal waters were investigated for five years to collect basic data. To evaluate the influence of distance from the coast on the microbial ecosystem, four sites, coastal Site (S1) and 0.75, 1.5, and 3 km away from the coast, were set up and the changes in physicochemical and biological factors were monitored. The results showed seasonal changes in water temperature, dissolved oxygen, salinity, and pH but with no significant differences between sites. For nutrients, the concentration of dissolved inorganic nitrogen increased from 6.4 μM in April-June to 16.4 μM in July-November, while that of phosphorus and silicon phosphate increased from 0.4 μM and 2.5 μM in April-June to 1.1 μM and 12.0 μM in July-November, respectively. Notably, phosphorus phosphate concentrations were lower in 2014-2015 (up to 0.2 μM) compared to 2016-2018 (up to 2.2 μM), indicating phosphorus limitation during this period. However, there were no differences in nutrients with distance from the coast, indicating that there was no effect of distance on nutrients. Phytoplankton (average 511 cells mL-1) showed relatively high biomass (up to 3,370 cells mL-1) in 2014-2015 when phosphorus phosphate was limited. Notably, at that time, the concentration of dissolved organic carbon was not high, with concentrations ranging from 1.1-2.3 mg L-1. However, no significant differences in biological factors were observed between the sites. Although this study revealed that there was no disturbance of the ecosystem, further research and more basic data on the microecosystem are necessary to understand the ecosystem of the Incheon.