• Title/Summary/Keyword: 무근 콘크리트

Search Result 92, Processing Time 0.017 seconds

Experimental Study on Reinforcement Effects of PET Sheet (PET 섬유의 보강효과에 관한 실험적 연구)

  • Ha, Sang-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.163-169
    • /
    • 2017
  • Although the strength of polyethylene terephthalate (PET) fibers which are generally used to make plastic bottles is low, the deformability of PET fibers is substantially high. Due to these material characteristics, a PET fiber can be used as a reliable strengthening material to resist a large deformation caused by earthquake and research pertinent to application of PET fibers is actively conducted in Japan. Therefore, in this study, experiments have been carried out to investigate the lateral confinement effect of PET fibers and to assess the applicability of PET fibers to construction fields by comparing the strengthening effect of PET fibers to that of carbon and glass fiber sheets. For this purpose, concrete cylinder specimens with parameters of different concrete strength and strengthening layers of carbon fiber sheets, glass fiber sheets, and PET fibers were respectively tested using two sets of cylinders for each parameter. As a result, specimens strengthened with carbon fiber sheets and glass fiber sheets failed due to sudden decrease of strength as with existing studies. However, specimens with PET fibers reached their maximum strength and then failed after gradual decrease strength without failure of PET fibers. In addition, although the strength of specimens with PET fibers did not significantly increase in comparison with that of specimens with carbon fiber sheets and glass fiber sheets, specimens with PET fibers indicated considerable deformability. Thus, a PET fiber can be considered as an effective strengthening material.

Seismic Risk Analysis of Track-on-Steel Plate Girder Railway Bridges (무도상 강판형 철도교의 지진 위험도 해석)

  • Park, Joo Nam;Choi, Eun Soo;Kim, Sung Il;Cho, Sung Cheol
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.1
    • /
    • pp.45-53
    • /
    • 2009
  • More than 40% of railway bridges on the conventional lines in Korea consist of track-on-steel plate girder (TOSPG) bridges. This type of bridge is typically designed without considering seismic loadings, as most of them were built before 1970. The seismic performance of this particular type of bridge could be upgraded through various seismic retrofit schemes, and seismic risk assessment could play a key role in decision-making on the level of the seismic retrofit. This study performed a seismic risk assessment of TOSPG bridges in Korea. The seismic damage of several crucial components of TOSPG bridges--fixed bearings, free bearings, and piers--were probabilistically estimated, and their seismic fragility curves were developed. The probability that the components would exceed their predefined limit states was also calculated by combining the fragility curves and the seismic hazard function. The analysis showed that the piers of TOSPG bridges, which are made of plain concrete without rebars, have relatively low risk against seismic loadings in Korea. This is because the mass of the superstructures of TOSPG bridges is relatively small, and hence, the seismic loading being transferred to the piers is minimal. The line-type bearings typically used for TOSPG bridges, however, are exposed to a degree of seismic risk. Among the bearings, the probability of the free-end bearings and the fixed-end bearings exceeding the slight damage state in 50 years was found to be 12.78% and 4.23%, respectively. The gap between these probability values lessened towards more serious damage states. This study could effectively provide an engineering background for decision-making activities on the seismic retrofit of railway bridges.