• Title/Summary/Keyword: 무감독 분류

Search Result 90, Processing Time 0.025 seconds

A Study on the Hyperspectral Image Classification with the Iterative Self-Organizing Unsupervised Spectral Angle Classification (반복최적화 무감독 분광각 분류 기법을 이용한 하이퍼스펙트럴 영상 분류에 관한 연구)

  • Jo, Hyun-Gee;Kim, Dae-Sung;Kim, Yong-Il
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.41-45
    • /
    • 2005
  • 분광각(Spectral Angle)을 이용한 분류는 같은 종류의 지표 대상물의 분광 특성이 대기 및 지형적인 영향으로 인해 원점을 기준으로 선형적인 분포 모양을 가진다는 가정에 기초한 새로운 접근의 분류 방식이다. 최근 분광각을 이용한 무감독 분류에 대한 연구가 활발히 이루어지고 있으나, 원격탐사 데이터의 특성을 반영한 효과적인 무감독 분류에 대한 연구는 미진한 상태이다. 본 연구는 하이퍼스펙트럴 영상 분류에 있어서 기존 무감독 분광각 분류(USAC, Unsupervised Spectral Angle Classification) 연구에서 해결하지 못한 문제점들을 보완한 반복최적화 무감독 분광각 분류(ISOUSAC, Iterative Self-Organizing USAC) 기법을 제안하고 있다. 이를 위해, 무감독 분광각 분류에 적합한 각 분할(Angle Range Division) 기법을 적용하여 군집 초기 중심을 설정하였으며, 병합(Merge)과 분할(Split)를 통한 유동적인 군집 분석을 수행하였다. 결과를 통해, 제안된 알고리즘이 기존의 기법보다 수행 시간뿐 아니라 시각적인 면에서도 우수한 결과를 도출함을 확인할 수 있었다.

  • PDF

Comparison between supervised and unsupervised land cover classification using satellite image (인공위성 영상을 이용한 토지피복의 감독 분류 및 무감독 분류 비교)

  • Han, Seung-Jae;Choi, Min-Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.355-355
    • /
    • 2011
  • 토지피복의 분류는 토지표면의 물리적인 지표면의 상태를 나타내는 자료로 환경, 행정, 수자원, 재해 등 다방면으로 이용되고 있다. 특히 수자원과 관련하여 식생의 증산과 토양의 증발을 통칭하는 증발산과 유출, 토양수분 등과 연관되어 있다. 광범위한 토지피복의 산정에는 경제성 및 주기성 등의 장점으로 인하여 인공위성 영상을 이용하는 기법이 적합하다. 위성영상분류법은 훈련지역의 선정 여부에 따라 감독분류와 무감독 분류로 나누어지며 각각의 알고리즘의 특성에 따라 더욱 세분화된다. 본 연구에서는 Landsat-TM (Thematic Mapper) 영상을 이용하여 감독 분류와 무감독 분류를 각각 적용하여 한강유역의 토지피복을 수역, 시가, 나지 습지, 초지, 산림, 농지의 7가지 부분으로 대분류로 산정하고 비교하였다. 두 경우의 정확도는 각각 91.6%, 90.9%의 비슷한 정확도를 나타내었으며, 세부적으로 우리나라의 대부분의 면적에 분포하는 산림, 농지, 시가, 수역의 정확도가 높게 나타났다. 또한 각 항목별로 정확도를 비교하였을 때 감독분류가 무감독분류에 비해 다소 정확한 것을 확인할 수 있었다. 추후 외부자료를 도입하면 비교적 낮은 정확도를 나타낸 초지, 습지, 나지의 정확도를 보완할 수 있을 것이다.

  • PDF

공간 지역 확장과 계층 연결 기법을 이용한 무감독 영상 분류

  • 이상훈
    • Proceedings of the KSRS Conference
    • /
    • 2001.03a
    • /
    • pp.25-33
    • /
    • 2001
  • 본 연구는 무감독 영상 분류를 위하여 지역 확장 영상 분할과 계층 연결 영상 분류를 포함하는 다중 단계 기법을 제안하고 있다. 모의 자료를 사용하여 제안된 알고리듬 대한 평가와 효율성에 대한 검증을 하였다.

  • PDF

A Study on the Hyperspectral Image Classification with the Iterative Self-Organizing Unsupervised Spectral Angle Classification (반복최적화 무감독 분광각 분류 기법을 이용한 하이퍼스펙트럴 영상 분류에 관한 연구)

  • Jo Hyun-Gee;Kim Dae-Sung;Yu Ki-Yun;Kim Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.2
    • /
    • pp.111-121
    • /
    • 2006
  • The classification using spectral angle is a new approach based on the fact that the spectra of the same type of surface objects in RS data are approximately linearly scaled variations of one another due to atmospheric and topographic effects. There are many researches on the unsupervised classification using spectral angle recently. Nevertheless, there are only a few which consider the characteristics of Hyperspectral data. On this study, we propose the ISOMUSAC(Iterative Self-Organizing Modified Unsupervised Spectral Angle Classification) which can supplement the defects of previous unsupervised spectral angle classification. ISOMUSAC uses the Angle Division for the selection of seed points and calculates the center of clusters using spectral angle. In addition, ISOMUSAC perform the iterative merging and splitting clusters. As a result, the proposed algorithm can reduce the time of processing and generate better classification result than previous unsupervised classification algorithms by visual and quantitative analysis. For the comparison with previous unsupervised spectral angle classification by quantitative analysis, we propose Validity Index using spectral angle.

Automatic Mosaicing of Airborne Multispectral Images using GPS/INS Data and Unsupervised Classification (GPS/INS자료와 무감독 분류를 이용한 항공영상 자동 모자이킹)

  • Jang, Jae-Dong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.1
    • /
    • pp.46-55
    • /
    • 2006
  • The purpose of this study is a development of an automatic mosaicing for applying to large number of airborne multispectral images, which reduces manual operation by human. 2436 airborne multispectral images were acquired from DuncanTech MS4100 camera with three bands; green, red and near infrared. LIDAR(LIght Detection And Ranging) data and GPS/INS(global positioning system/inertial navigation system) data were collected with the multispectral images. First, the multispectral images were converted to image patterns by unsupervised classification. Their patterns were compared with those of adjacent images to derive relative spatial position between images. Relative spatial positions were derived for 80% of the whole images. Second, it accomplished an automatic mosaicing using GPS/INS data and unsupervised classification. Since the time of GPS/INS data did not synchronized the time of readout images, synchronized GPS/INS data with the time of readout image were selected in consecutive data by comparing unsupervised classified images. This method realized mosaicing automatically for 96% images and RMSE (root mean square error) for the spatial precision of mosaiced images was only 1.44 m by validation with LIDAR data.

  • PDF

Extraction of paddy rice field in North Korea using time-series satellite images (시계열 위성영상을 이용한 북한 지역의 논벼 재배 지역 추출 기법 연구)

  • Lee, Sang-Hyun;Choi, Jin-Yong;Oh, Yun-Gyeong;Yoo, Seung-Hwan;Lee, Sung-Hack;Park, Na-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.441-441
    • /
    • 2012
  • 본 연구의 목적은 북한지역에 적용할 수 있는 논벼 재배지역 추출 기법을 개발 및 적용하여 논 분포도를 작성하고, 정확도를 평가하는 것이다. 이를 위하여 북한에 적용 가능한 시계열 위성자료를 수집하고, 논벼 재배지역 추출을 위한 토지피복 분류 기법을 개발하여 북한의 논벼 재배지역 분포도를 작성하고자 한다. 최종적으로 작성된 논 분포도를 북한의 농경지 모니터링을 위한 기초 자료로 제공토록 한다. 본 연구에서는 시계열 NDVI를 적용한 객체기반 무감독 토지피복 분류 방법을 활용하여 북한의 황해남도 재령군을 대상으로 토지피복 분류와 논 지역을 추출을 수행하고자 하였다. 본 연구에서 활용한 영상은 RapieEye로서 5개의 위성이 지구를 관측하고 있기 때문에 매일 동일한 지역의 영상을 폭넓게 획득할 수 있다는 장점이 있으며, Red, Green, Blue, Near Infra Red 밴드 외에 Red Edge 밴드에서 데이터를 획득하여 산림 모니터링, 농작물 모니터링 등에 효과적으로 활용할 수 있다는 특징이 있다. 먼저 2010년 4월, 6월, 9월 영상으로 각 영상의 NDVI를 산정하고 이를 활용하여 객체를 생성하였다. 다음으로 생성된 객체를 바탕으로 무감독 토지피복 분류를 수행하였고, 논 적합지역에 대한 지형 정보를 분류결과에 반영하여 최종적인 토지피복지도 및 논 지역 지도를 구축하였다. 본 연구결과는 원격탐사분야의 응용 기술을 확장하고, 향후 북한지역의 농산물 생산량 파악과 농업수자원 평가 분야에서도 폭 넓게 활용될 것으로 판단된다.

  • PDF

Unsupervised Image Classification Using Spatial Region Growing Segmentation and Hierarchical Clustering (공간지역확장과 계층집단연결 기법을 이용한 무감독 영상분류)

  • 이상훈
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.1
    • /
    • pp.57-69
    • /
    • 2001
  • This study propose a image processing system of unsupervised analysis. This system integrates low-level segmentation and high-level classification. The segmentation and classification are conducted respectively with and without spatial constraints on merging by a hierarchical clustering procedure. The clustering utilizes the local mutually closest neighbors and multi-window operation of a pyramid-like structure. The proposed system has been evaluated using simulated images and applied for the LANDSATETM+ image collected from Youngin-Nungpyung area on the Korean Peninsula.

Unsupervised Classification of KOMPSAT EOC Imagery Based on Independent Component Analysis (독립 요소 분석 기반의 KOMPSAT EOC영상 무감독 분류)

  • 변승건;이호영;이쾌희
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.581-587
    • /
    • 2003
  • 독립 요소 분석 (Independent Component Analysis: ICA)는 텍스처를 의미 있는 특징으로 변환하는 강인한 영상 필터를 생성하기 위한 확률적 방법이다. ICA는 고차통계적 특성을 사용하여 ICA 필터와 독립 요소를 동시에 학습한다. 제안한 분류 방법은 fast ICA 알고리즘을 사용하여 KOMPSAT 영상으로부터 ICA 필터를 생성한 다음, 필터에 의해 투영된 텍스처들의 특징들을 독립 평면상에서 무감독 방법으로 분류한다. KOMPSAT 영상은 텍스처 성분이 뚜렷하지 않는 영역이 존재하기 때문에 본 논문에서는 투영된 특징 값들과 윈도우 내의 정규화된 평균 화소값으로 특징 벡터를 재구성하였다. 분류 방법으로는 K-means 클러스터링을 적용하였다. 6.6m 해상도를 가진 KOMPSAT 흑백 영상에 대해 제안한 방법은 우수한 분류 성능을 보인다.

  • PDF

A Study on Automatic Vehicle Extraction within Drone Image Bounding Box Using Unsupervised SVM Classification Technique (무감독 SVM 분류 기법을 통한 드론 영상 경계 박스 내 차량 자동 추출 연구)

  • Junho Yeom
    • Land and Housing Review
    • /
    • v.14 no.4
    • /
    • pp.95-102
    • /
    • 2023
  • Numerous investigations have explored the integration of machine leaning algorithms with high-resolution drone image for object detection in urban settings. However, a prevalent limitation in vehicle extraction studies involves the reliance on bounding boxes rather than instance segmentation. This limitation hinders the precise determination of vehicle direction and exact boundaries. Instance segmentation, while providing detailed object boundaries, necessitates labour intensive labelling for individual objects, prompting the need for research on automating unsupervised instance segmentation in vehicle extraction. In this study, a novel approach was proposed for vehicle extraction utilizing unsupervised SVM classification applied to vehicle bounding boxes in drone images. The method aims to address the challenges associated with bounding box-based approaches and provide a more accurate representation of vehicle boundaries. The study showed promising results, demonstrating an 89% accuracy in vehicle extraction. Notably, the proposed technique proved effective even when dealing with significant variations in spectral characteristics within the vehicles. This research contributes to advancing the field by offering a viable solution for automatic and unsupervised instance segmentation in the context of vehicle extraction from image.

Development of Classification Method for the Remote Sensing Digital Image Using Canonical Correlation Analysis (정준상관분석을 이용한 원격탐사 수치화상 분류기법의 개발 : 무감독분류기법과 정준상관분석의 통합 알고리즘)

  • Kim, Yong-Il;Kim, Dong-Hyun;Park, Min-Ho
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.4 no.2 s.8
    • /
    • pp.181-193
    • /
    • 1996
  • A new technique for land cover classification which applies digital image pre-classified by unsupervised classification technique, clustering, to Canonical Correlation Analysis(CCA) was proposed in this paper. Compared with maximum likelihood classification, the proposed technique had a good flexibility in selecting training areas. This implies that any selected position of training areas has few effects on classification results. Land cover of each cluster designated by CCA after clustering is able to be used as prior information for maximum likelihood classification. In case that the same training areas are used, accuracy of classification using Canonical Correlation Analysis after cluster analysis is better than that of maximum likelihood classification. Therefore, a new technique proposed in this study will be able to be put to practical use. Moreover this will play an important role in the construction of GIS database

  • PDF