• 제목/요약/키워드: 무감독 분류

검색결과 90건 처리시간 0.029초

반복최적화 무감독 분광각 분류 기법을 이용한 하이퍼스펙트럴 영상 분류에 관한 연구 (A Study on the Hyperspectral Image Classification with the Iterative Self-Organizing Unsupervised Spectral Angle Classification)

  • 조현기;김대성;김용일
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2005년도 추계학술대회
    • /
    • pp.41-45
    • /
    • 2005
  • 분광각(Spectral Angle)을 이용한 분류는 같은 종류의 지표 대상물의 분광 특성이 대기 및 지형적인 영향으로 인해 원점을 기준으로 선형적인 분포 모양을 가진다는 가정에 기초한 새로운 접근의 분류 방식이다. 최근 분광각을 이용한 무감독 분류에 대한 연구가 활발히 이루어지고 있으나, 원격탐사 데이터의 특성을 반영한 효과적인 무감독 분류에 대한 연구는 미진한 상태이다. 본 연구는 하이퍼스펙트럴 영상 분류에 있어서 기존 무감독 분광각 분류(USAC, Unsupervised Spectral Angle Classification) 연구에서 해결하지 못한 문제점들을 보완한 반복최적화 무감독 분광각 분류(ISOUSAC, Iterative Self-Organizing USAC) 기법을 제안하고 있다. 이를 위해, 무감독 분광각 분류에 적합한 각 분할(Angle Range Division) 기법을 적용하여 군집 초기 중심을 설정하였으며, 병합(Merge)과 분할(Split)를 통한 유동적인 군집 분석을 수행하였다. 결과를 통해, 제안된 알고리즘이 기존의 기법보다 수행 시간뿐 아니라 시각적인 면에서도 우수한 결과를 도출함을 확인할 수 있었다.

  • PDF

인공위성 영상을 이용한 토지피복의 감독 분류 및 무감독 분류 비교 (Comparison between supervised and unsupervised land cover classification using satellite image)

  • 한승재;최민하
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.355-355
    • /
    • 2011
  • 토지피복의 분류는 토지표면의 물리적인 지표면의 상태를 나타내는 자료로 환경, 행정, 수자원, 재해 등 다방면으로 이용되고 있다. 특히 수자원과 관련하여 식생의 증산과 토양의 증발을 통칭하는 증발산과 유출, 토양수분 등과 연관되어 있다. 광범위한 토지피복의 산정에는 경제성 및 주기성 등의 장점으로 인하여 인공위성 영상을 이용하는 기법이 적합하다. 위성영상분류법은 훈련지역의 선정 여부에 따라 감독분류와 무감독 분류로 나누어지며 각각의 알고리즘의 특성에 따라 더욱 세분화된다. 본 연구에서는 Landsat-TM (Thematic Mapper) 영상을 이용하여 감독 분류와 무감독 분류를 각각 적용하여 한강유역의 토지피복을 수역, 시가, 나지 습지, 초지, 산림, 농지의 7가지 부분으로 대분류로 산정하고 비교하였다. 두 경우의 정확도는 각각 91.6%, 90.9%의 비슷한 정확도를 나타내었으며, 세부적으로 우리나라의 대부분의 면적에 분포하는 산림, 농지, 시가, 수역의 정확도가 높게 나타났다. 또한 각 항목별로 정확도를 비교하였을 때 감독분류가 무감독분류에 비해 다소 정확한 것을 확인할 수 있었다. 추후 외부자료를 도입하면 비교적 낮은 정확도를 나타낸 초지, 습지, 나지의 정확도를 보완할 수 있을 것이다.

  • PDF

공간 지역 확장과 계층 연결 기법을 이용한 무감독 영상 분류

  • 이상훈
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2001년도 춘계 학술대회 논문집 통권 4호 Proceedings of the 2001 KSRS Spring Meeting
    • /
    • pp.25-33
    • /
    • 2001
  • 본 연구는 무감독 영상 분류를 위하여 지역 확장 영상 분할과 계층 연결 영상 분류를 포함하는 다중 단계 기법을 제안하고 있다. 모의 자료를 사용하여 제안된 알고리듬 대한 평가와 효율성에 대한 검증을 하였다.

  • PDF

반복최적화 무감독 분광각 분류 기법을 이용한 하이퍼스펙트럴 영상 분류에 관한 연구 (A Study on the Hyperspectral Image Classification with the Iterative Self-Organizing Unsupervised Spectral Angle Classification)

  • 조현기;김대성;유기윤;김용일
    • 대한원격탐사학회지
    • /
    • 제22권2호
    • /
    • pp.111-121
    • /
    • 2006
  • 분광각(Spectral Angle)을 이용한 분류는 같은 종류의 지표 대상물의 분광 특성이 대기 및 지형적인 영향으로 인해 원점을 기준으로 유사한 분광각을 가지며, 선형적인 분포 모양을 가진다는 가정에 기초한 분류 방식이다. 최근 분광각을 이용한 무감독 분류에 대한 연구가 활발히 이루어지고 있으나, 하이퍼스펙트럴 데이터의 특성을 반영한 효과적인 무감독 분류에 대한 연구는 미진한 상태이다 본 연구는 하이퍼스펙트럴 영상 분류에 있어서 기존 무감독 분광각 분류(USAC, Unsupervised Spectral Angle Classification) 연구에서 나타난 문제점들을 보완한 반복최적화 무감독 분광각 분류(ISOUSAC, Iterative Self-Organizing USAC) 기법을 제안하고 있다. 이를 위해, 무감독 분광각 분류에 적합한 각 분할(Angle Range Division) 기법을 적용하여 군집 초기 중심을 설정하였고, 군집 중심 계산에 있어서 각 중심을 이용하였다. 뿐만 아니라 병합(Merge)과 분할(Split)를 통한 유동적인 군집 분석을 수행하였다. 결과를 통해, 제안된 알고리즘이 기존의 기법보다 수행 시간뿐 아니라 시각적, 정량적인 면에서 우수한 결과를 도출하였으며, 분광각을 이용한 군집 유효성 지수(Validity Index)를 제안함으로써 기존의 무감독 분광각 분류와 정량적 비교를 수행하였다.

GPS/INS자료와 무감독 분류를 이용한 항공영상 자동 모자이킹 (Automatic Mosaicing of Airborne Multispectral Images using GPS/INS Data and Unsupervised Classification)

  • 장재동
    • 한국지리정보학회지
    • /
    • 제9권1호
    • /
    • pp.46-55
    • /
    • 2006
  • 본 연구에서는 항공기로부터 얻어지는 다수의 다중 분광영상을 자동적인 모자이킹 방법을 개발함으로써 수작업을 최대한 줄이는데 목적을 두었다. DuncanTech MS4100 카메라를 이용하여 2436개의 녹색, 적색, 근적외 삼분광 영상이 획득되었다. 카메라 영상과 함께 관측한 LIDAR(LIght Detection And Ranging)자료와 항공기의 위치와 자세를 측정하기위해 GPS/INS(global positioning system/inertial navigation system)자료도 산출되었다. 다수의 다중 분광 영상은 우선 무감독 분류를 적용하여 영상 패턴으로 변환하였다. 인접한 영상의 패턴을 비교하여 각 영상의 상대적인 공간의 위치를 파악하였다. 모든 항공 영상 중에서 80%의 인접한 영상 패턴의 일치율을 파악하고 모자이킹할 수 있었다. 다음으로 GPS/INS자료와 무감독 분류를 혼합한 방법으로 항공 영상을 자동 모자이킹 수행하였다. GPS/INS자료와 영상 포착시점의 불일치로 연속되는 GPS/INS자료 중에 무감독 분류를 이용한 영상 패턴의 일치율을 조사하여 영상포착시점에 일치하는 GPS/INS자료를 선택하였다. 이 혼합방법으로 96%의 영상을 모자이킹했으며, LIDAR자료와의 검정에서 공간적 정도 RMSE는 1.44 m에 불과했다.

  • PDF

시계열 위성영상을 이용한 북한 지역의 논벼 재배 지역 추출 기법 연구 (Extraction of paddy rice field in North Korea using time-series satellite images)

  • 이상현;최진용;오윤경;유승환;이성학;박나영
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.441-441
    • /
    • 2012
  • 본 연구의 목적은 북한지역에 적용할 수 있는 논벼 재배지역 추출 기법을 개발 및 적용하여 논 분포도를 작성하고, 정확도를 평가하는 것이다. 이를 위하여 북한에 적용 가능한 시계열 위성자료를 수집하고, 논벼 재배지역 추출을 위한 토지피복 분류 기법을 개발하여 북한의 논벼 재배지역 분포도를 작성하고자 한다. 최종적으로 작성된 논 분포도를 북한의 농경지 모니터링을 위한 기초 자료로 제공토록 한다. 본 연구에서는 시계열 NDVI를 적용한 객체기반 무감독 토지피복 분류 방법을 활용하여 북한의 황해남도 재령군을 대상으로 토지피복 분류와 논 지역을 추출을 수행하고자 하였다. 본 연구에서 활용한 영상은 RapieEye로서 5개의 위성이 지구를 관측하고 있기 때문에 매일 동일한 지역의 영상을 폭넓게 획득할 수 있다는 장점이 있으며, Red, Green, Blue, Near Infra Red 밴드 외에 Red Edge 밴드에서 데이터를 획득하여 산림 모니터링, 농작물 모니터링 등에 효과적으로 활용할 수 있다는 특징이 있다. 먼저 2010년 4월, 6월, 9월 영상으로 각 영상의 NDVI를 산정하고 이를 활용하여 객체를 생성하였다. 다음으로 생성된 객체를 바탕으로 무감독 토지피복 분류를 수행하였고, 논 적합지역에 대한 지형 정보를 분류결과에 반영하여 최종적인 토지피복지도 및 논 지역 지도를 구축하였다. 본 연구결과는 원격탐사분야의 응용 기술을 확장하고, 향후 북한지역의 농산물 생산량 파악과 농업수자원 평가 분야에서도 폭 넓게 활용될 것으로 판단된다.

  • PDF

공간지역확장과 계층집단연결 기법을 이용한 무감독 영상분류 (Unsupervised Image Classification Using Spatial Region Growing Segmentation and Hierarchical Clustering)

  • 이상훈
    • 대한원격탐사학회지
    • /
    • 제17권1호
    • /
    • pp.57-69
    • /
    • 2001
  • 본 연구는 무감독 영상분류를 위하여 공간지역 확장을 통하여 영상을 분할한 후 분할된 집단을 한정된 수의 클래스로 분류하는 다중단계 기법을 제안하고 있다. 제안된 알고리듬은 무감독 분석을 위하여 작은 집단들을 단계적으로 큰 집단들로 합병해 가는 계층집단연결 기법에 기반을 두고 있다. 다중단계 기법의 영상분할 단계는 공간적으로 근접하고 있는 이웃지역간의 결합을 통하여 최종적으로 전체영상 공간내의 모든 집단에 대해서 서로 이웃하고 있는 집단들의 물리적 특성이 서로 다르도록 영상을 분할하는 과정이고, 영상분류 단계는 결합 지역의 공간적 제약 없이 영상 분할 단계에서 분할된 지역을 상대적으로 적은 수의 클래스로 분류하는 과정이다. 제안 된 알고리듬에서 사용하고 있는 계층집단연결 기법의 계산/기억 상의 복잡성을 완화시키기 위해 상호최근사 이웃쌍과 다중창 작업을 사용하고 있다. 모의 자료를 사용하여 제단 된 알고리듬 대한 평가와 효율성을 검증하였고 경기도 용인.능평지역의 LANDSAT ETM+ 자료에 적용한 결과를 예시하고 있다.

독립 요소 분석 기반의 KOMPSAT EOC영상 무감독 분류 (Unsupervised Classification of KOMPSAT EOC Imagery Based on Independent Component Analysis)

  • 변승건;이호영;이쾌희
    • 한국GIS학회:학술대회논문집
    • /
    • 한국GIS학회 2003년도 공동 춘계학술대회 논문집
    • /
    • pp.581-587
    • /
    • 2003
  • 독립 요소 분석 (Independent Component Analysis: ICA)는 텍스처를 의미 있는 특징으로 변환하는 강인한 영상 필터를 생성하기 위한 확률적 방법이다. ICA는 고차통계적 특성을 사용하여 ICA 필터와 독립 요소를 동시에 학습한다. 제안한 분류 방법은 fast ICA 알고리즘을 사용하여 KOMPSAT 영상으로부터 ICA 필터를 생성한 다음, 필터에 의해 투영된 텍스처들의 특징들을 독립 평면상에서 무감독 방법으로 분류한다. KOMPSAT 영상은 텍스처 성분이 뚜렷하지 않는 영역이 존재하기 때문에 본 논문에서는 투영된 특징 값들과 윈도우 내의 정규화된 평균 화소값으로 특징 벡터를 재구성하였다. 분류 방법으로는 K-means 클러스터링을 적용하였다. 6.6m 해상도를 가진 KOMPSAT 흑백 영상에 대해 제안한 방법은 우수한 분류 성능을 보인다.

  • PDF

무감독 SVM 분류 기법을 통한 드론 영상 경계 박스 내 차량 자동 추출 연구 (A Study on Automatic Vehicle Extraction within Drone Image Bounding Box Using Unsupervised SVM Classification Technique)

  • 염준호
    • 토지주택연구
    • /
    • 제14권4호
    • /
    • pp.95-102
    • /
    • 2023
  • 도시 지역에서 객체를 탐지하기 위해 드론 고해상도 영상에 기계 학습 알고리즘을 적용하는 다양한 연구가 진행되었다. 그러나 대부분의 차량 추출 연구는 인스턴스 세그멘테이션 대신 경계 박스로 차량을 탐지하여 차량의 방향이나 정확한 경계를 알 수 없다는 한계점이 있다. 인스턴스 세그멘테이션은 개별 개체를 훈련하기 위한 노동 집약적인 레이블링 작업을 필요로 하므로, 차량 추출을 위해 자동 무감독 인스턴스 세그멘테이션을 수행하는 방법에 대한 연구가 필요하다. 따라서 본 연구에서는 드론 영상의 차량 경계 박스에 대해 무감독 SVM 분류 기반의 차량 추출 기법을 제안하였다. 연구 결과, 차량을 89% 정확도로 추출할 수 있음을 확인하였으며 차량 내의 분광 특성이 크게 다른 경우에도 차량을 추출할 수 있음을 확인하였다.

정준상관분석을 이용한 원격탐사 수치화상 분류기법의 개발 : 무감독분류기법과 정준상관분석의 통합 알고리즘 (Development of Classification Method for the Remote Sensing Digital Image Using Canonical Correlation Analysis)

  • 김용일;김동현;박민호
    • 대한공간정보학회지
    • /
    • 제4권2호
    • /
    • pp.181-193
    • /
    • 1996
  • 본 연구는 원격탐사의 수치화상분류에 적용된 바 없는 정준상관분석(Canonical Correlation Analysis)기법을 무감독분류한 위성화상데이터에 적용하여 토지피복분류하는 새로운 방법을 개발하는 것을 목적으로 한다. 개발된 분류기법은 기존의 분류기법인 최대우도분류기법에 비해 분류기준용 표본데이터 선정이 용이함을 알 수 있었다. 즉, 정준상관분석에 의한 분류결과는 분류기준용 표본데이터의 선정위치에 거의 영향을 받지 않는다. 또한 무감독분류 후 정준상관분석에 의해 결정된 각 군집의 토지피복은 최대우도분류를 위한 사전정보로 활용정보로 활용가능하다. 동일한 분류기준용 표본데이터 사용시, 무감독분류 후 정준상관분석에 의한 분류가 최대우도분류보다 분류정확도가 우수하였다. 이상과 같은 결과로 판단해 볼 때 연구에서는 시도된 분류기법은 원격탐사의 분류기법 분야에서 실용화 될 수 있으며, 나아가서는 GIS 데이터베이스 구축에 중요한 역학을 할 수 있을 것이다.

  • PDF